Background: One of the drawbacks of vital teeth bleaching is color stability. The aim of the present study was to evaluate the effects of tea and tomato sauce on the color stability of bleached enamel in association with the application of MI Paste Plus (CPP-ACPF). Materials and Methods: Sixty enamel samples were bleached with 10% carbamide peroxide for two weeks then divided into three groups (A, B and C) of 20 samples each. After bleaching, the samples of each group were subdivided into two subgroups (n=10). While subgroups A1, B1 and C1 were kept in distilled water, A2, B2, and C2 were treated with MI Paste Plus. Then, the samples were immersed in different solutions as follow: A1 and A2 in distilled water (control); B1 and B2 in black tea; and C1 and C2 in tomato sauce for half an hour/day for seven days. Using a colorimeter, Teeth color measurements were recorded at baseline, after bleaching, staining, and polishing. Color changes were recorded according to the Vita shade guide and the CIE Lab system. Student's t-test was used to analyze differences between the subgroups at p<0.05. Results: Significant color changes were recorded for the tea group after staining, but not after polishing (p<0.05). No significant differences in color measurements were recorded between the subgroups of each group at all periods (p>0.05). Conclusion: Only tea produced clinically perceivable color change of bleached enamel after staining as well as after polishing. MI Paste Plus did not affect enamel color change for all the groups.
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show MoreThis paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreIn this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated. Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat
... Show MoreA novel welded demountable shear connector for sustainable steel-concrete composite structures is proposed. The proposed connector consists of a grout-filled steel tube bolted to a compatible partially threaded stud, which is welded on a steel section. This connector allows for an easy deconstruction at the end of the service life of a building, promoting the reuse of both the concrete slabs and the steel sections. This paper presents the experimental evaluation of the structural behavior of the proposed connector using a horizontal pushout test arrangement. The effects of various parameters, including the tube thickness, the presence of grout infill, and the concrete slab compressive strength, were assessed. A nonlinear finite element mode
... Show More