ABSTRACT Background: Improving the properties of heat- cured and self-cured acrylic resin have been studied by many researchers. However, little studies concerned with visible light cured resin (VLCR) improved through addition of nanofiller are available. The purpose of this study was to evaluate some properties of (VLCR) after addition of SiO2 nanofiller. Materials and Methods: SiO2 nanofiller were added to (VLCR) tray material after being dissolved in tetrahydrofuran (THF) solvent. According to the pilot study 2% SiO2 nanofiller addition exhibited better properties than the other percentages (1%, 3%). The main study conducted involved (100) specimens divided into 5 groups according to the test included. (20) Specimens were selected for each test (10 samples for the control group and 10 samples for the experimental 2% SiO2 nanofiller group). The properties investigated were transverse strength, impact strength, surface hardness, surface roughness, water sorption and solubility. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) were used to assess nanofiller distribution and identification of elements. The data were subjected to descriptive statistical analysis and independent sample t-test. Results: The mean value of transverse strength of experimental group increased significantly, while the impact strength of experimental group decreased significantly when compared to control group. A significant increase in surface hardness was noticed in the experimental group, while non-significant increase in surface roughness was observed. The water sorption values were decreased significantly, while a non-significant decrease in water solubility was observed in the experimental group. Conclusion: Addition of SiO2 nanofiller to (VLCR), slightly improve the transverse strength and surface hardness, while water sorption and solubility slightly decreased. The impact strength was significantly deteriorated, while the surface roughness shows non-significant increment.
This study aims to highlight the role of strategic leadership in adopting the intelligent organization model. The study was conducted on 7 economic organizations in Algeria. The study population consisted of 354 leaders, of whom a random sample of 176 leaders (managers, department heads, division heads, engineers) was selected. The researcher used a questionnaire as the main tool of the study. Statistical analysis and hypothesis testing were conducted using SEM (Structural Equation Modeling) with the aid of SPSS.v26 and AMOS.v24 software. The study concluded with a set of results, most notably: there is a statistically significant direct positive effect between strategic leadership and building intelligent organizations at a significance le
... Show MoreThis experiment was carried out in the College of Agricultural Engineering Sciences, Univ. of Baghdad, during autumn 2021 growing season to investigate possibility study of increase lettuce antioxidant and biological yield, growing and producing lettuce hydroponically under film technique (NFT) using a globally approved standard solution (Cooper solution), Nested design with three replications adopted in the experiment, each of them included in main plot the first factor, which is LED light (B and R), Then levels of second factor were randomly distributed within each replicate, which included spraying with organic nutrients which was Cymbopogon citratus and Hibiscus sabdariffa at two
The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show MoreSpray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreFor the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreThis study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The a
... Show MoreAbstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
|
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |