Abstract Background: One of the most important methods to replace lost teeth is dental implants. In order to increase the strength of connection of the implant with the jaw bone to provide early loading after placement, implant is coated by different coating materials that achieved that purpose. The aim of this study was to evaluate the influence of coating CP Ti implant with calcium carbonate on the strength of bone-implant interface after two and six weeks of implantation in rabbit femur bone by torque removal test, histological and histomorphometric analysis. Materials and methods: Coating the surface of commercially pure titanium screws with extra pure synthetic calcium carbonate via electrophoretic deposition method (EPD) was done. The surface of disc samples after coating was checked by optical microscopy, X-ray diffraction examination and measurement of coating thickness. Ten male white French rabbits were prepared for implantation. Forty screws were implanted in the femur bone, two implant screws in each femur bone. The first screw is coated with calcium carbonate and compared with the second uncoated screw. Rabbits are divided into two groups according to the healing periods 2 and 6 weeks. By torque removal, the osseointegration is measured. Single screw from each group was used for histological and Histomorphometric analysis. Results: There was significant increased mean torque removal for screws coated with calcium carbonate compared with uncoated screws. Histological examination showed an increase in the growth of bone cells for coated screws, and the histomorphometric analysis showed an increase in new bone formation percent (NBFP). Conclusion: Coating the surface of the CP Ti implant with calcium carbonate via electrophoretic deposition method had great effect in increasing the osseointegration than uncoated surface.
This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced
... Show MoreBackground. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreThe extraction of Basil oil from Iraqi Ocimum basillicum leaves using n-hexane and petroleum ether as organic solvents were studied and compared. The concentration of oil has been determined in a variety of extraction temperatures and agitation speed. The solvent to solid ratio effect has been studied in order to evaluate the concentration of Ocimum basillicum oil. The optimum experimental conditions for the oil extraction were established as follows: n-hexane as organic solvent, 60 °C extraction temperature, 300 rpm agitation speed and 40:1mL:g amount of solvent to solid ratio.
in this paper, we give a concept of
Abstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine concentrations in water distribution systems or production facilities. In order to use this method in the drinking water industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. Therefore, developing a process for accelerat
... Show MoreEquation Boizil used to Oatae approximate value of bladder pressure for 25 healthy people compared with Amqas the Alrotinahh ways used an indirect the catheter Bashaddam and found this method is cheap and harmless and easy
In this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.
The nanocrystalline porous silicon (PS) films are prepared by electrochemical etching ECE of p -type silicon wafer with current density (10mA/cm ) and etching times on the formation nano -sized pore array with a dimension of around different etching time (10 and 20) min. The films were characterized by the measurement of XRD, atomic force microscopy properties (AFM). We have estimated crystallites size from X -Ray diffraction about nanoscale for PS and AFM confirms the nanometric size Chemical fictionalization during the electrochemical etching show on the surface chemical composition of PS. The atomic force microscopy investigation shows the rough silicon surface, with increasing etching process (current density and etching time) porous st
... Show MoreThis study assessed the advantage of using earthworms in combination with punch waste and nutrients in remediating drill cuttings contaminated with hydrocarbons. Analyses were performed on day 0, 7, 14, 21, and 28 of the experiment. Two hydrocarbon concentrations were used (20000 mg/kg and 40000 mg/kg) for three groups of earthworms number which were five, ten and twenty earthworms. After 28 days, the total petroleum hydrocarbon (TPH) concentration (20000 mg/kg) was reduced to 13200 mg/kg, 9800 mg/kg, and 6300 mg/kg in treatments with five, ten and twenty earthworms respectively. Also, TPH concentration (40000 mg/kg) was reduced to 22000 mg/kg, 10100 mg/kg, and 4200 mg/kg in treatments with the above number of earthworms respectively. The p
... Show More
