Background: Saliva is one of the most important etiological host factors in relation to dental caries. It affects the carious process by its organic and inorganic constituents; in addition to its physiological functions as (flow rate, pH and buffer capacity). The aims of this study were to determine the concentrations of major elements (calcium and phosphorus) and trace elements (ferrous iron, nickel, chromium and aluminum) in saliva among a group of adolescent girls, and to explore the relation of these elements, flow rate and pH with dental caries. Material & Methods: The study group consisted of 25 girls with an age of 13-15 years old. Dental caries was diagnosed by both clinical and radiographical examinations following the criteria of D1-4MFS index. Stimulated saliva was collected from patients between 9-11 Am under standarized conditions, and chemically analyzed to determine the concentration of calcium, nickel, chromium and aluminum by Atomic Absorption Spectrophotometer, while salivary phosphorus and ferrous iron were determined by using colorimetric method. The average salivary flow rate was measured from total volume, and salivary pH was determined using digital pH meter. All data were analyzed using SPSS version 19. Results: All elements measured in saliva in addition to P/Ca ratio recorded statistically non significant correlation with DMFS, except ferrous Fe ions which showed statistically significant correlation (r= 0.34, P=0.05). Salivary flow rate and pH correlated weakly and statistically not significant with DMFS There were weak and statistically not significant correlations between all elements measured in saliva and salivary flow rate and pH. Conclusions: It had been found that Fe, Ni, Al and Cr ions present in very small amounts in saliva in comparison to Ca and P ions. The presence of these elements in saliva may indicate their presence in food, water and air.
The purpose of this study is to demonstrate a simple high sensitivity vapor sensor for propanol ((CH3)2CHOH). A free space gap was employed in two arms of a Mach-Zehnder interferometer to serve as the sensing mechanism by adding propanol volume (0.2, 0.4, 0.6, 0.8, and 1) ml and to set the phase reference with a physical spacing of (0.5, 1, 1.5, and 2) mm. The propagation constant of transmitted light in the Mach-Zehnder interferometer’s gap changes due to the small variation in the refractive index inside sensing arm that will further shift the optical phase of the signal. Experimental results indicated that the highest sensitivity of propanol was about 0.0275 nm/ml in different liquid volume while highest phase shift was 0.182×103 i
... Show MoreFlexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac
... Show More
The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was use
... Show MoreLet
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum
... Show More