Background: The ideal force-delivery system must: provide optimal tooth moving forces that elicit the desired effects, be comfortable and hygienic for the patient, require minimal operator manipulation and patient cooperation and provide rapid tooth movement with minimal mobility during orthodontic therapy, the elastomeric chains have the greatest potential to fulfill these requirements. Materials and Methods: This in vitro study was designed to determine the effect of three different mechanisms for canine retraction : (6-3 , 6-5-3 and chain loop ) on the load relaxation behavior of three types of elastomeric chains : (maximum clear , maximum silver and extreme silver) from the same company (Ortho Technology company) with two different brand configurations: closed loop and open (short filament) chains under effect of time at (zero time, 24hr., 7, 14 , 21 and 28 days) in artificial saliva. Results: Statistical analysis showed that there was a highly significant difference in the mean percentage force decay for the three different mechanisms (P? 0.001).For all the three types, the 6-3 mechanism had the smallest mean percentage force decay. There was a highly significant difference in the mean percentage force decay for the different types (P? 0.001). For all three mechanisms, extreme silver elastomeric chains had the smallest percentage force decay while maximum silver elastomeric chains had the highest percentage force decay. Conclusion: This study illustrated that for all the three types of elastomeric chains, the (6-3) mechanism had the smallest mean percentage force decay. This finding suggests that it may be most efficient to retract a canine utilizing elastomeric chain directly from the molar hook to the canine bracket. The chain loop mechanism may not be indicated for space closure in vivo due to the excessive physiological force values involved with this mechanism.
Phenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de
... Show MoreUltrasonic Extraction method followed by gradient HPLC was carried out for the simultaneous determination of four insecticides are [imidacloprid (Imi), thiamethoxam (Thi), indoxacarb (Ind) and abamectin (Aba)] used to combat the major insect pests in Iraq, whitefly, Dubas Bug, worms fruits as well as to combat the spiders – dream respectively in eco-soil samples. The extraction recovery was in the range of 99.77 to 109.1 %. The dissipation kinetics and residual levels of these insecticides in soil sample was studied under field ecosystem. The half-life of the mix insecticides was determined. The half-life was in range of 0.38 to 4.06 days with the soil samples were brought from the Agricultural Land called Nahrawan located in th
... Show MorePhenol oxidation by Fenton's reagent (H2O2 + Fe+2) in aqueous solution has been studied for the purpose of learning
more about the reactions involved and the extent of the oxidation process, under various operating conditions. An initial
phenol concentration of 100 mg/L was used as representative of a phenolic industrial wastewater. Working temperature
of 25C was tested, and initial pH was set at 5.6 . The H2O2 and the Fe+2 doses were varied in the range of
(H2O2/Fe+2/phenol = 3/0.25/1 to 5/0.5/1). Keeping the stirring speed of 200 rpm.
The results exhibit that the highest phenol conversion (100%) was obtained under (H2O/Fe+2/phenol ratio of 5/0.5/1)
at about 180 min. The study has indicated that Fenton's oxidation i
Physical adsorption by nitrogen gas was studied on seven commercial platinum reforming catalysts (RG-402, RG-412, RG-432, RG-451, RG 422,RG-482, PS-10), four prepared platinum catalysts (0.1%Pt/alumina, 0.2 %Pt/alumina, 0.45 %Pt/alumina and 0.55% Pt/alumina), and -alumina support. Physical adsorption was carried out by using Accelerated Surface Area and Porosimetry (ASAP 2400 device) at 77 K . The results indicate that the surface area in genaral decreases with increasing platinum percentage, high platinum loaded (0.45% and 0.55%) it was found that the percent increasing in surface area was lower than those obtained for low platinum loaded catalysts , and at very higher platinum loading 0.6 %Pt , some reduction in surface area was
... Show MoreBackground: The present study aimed to determine the influence of the different types of mouth wash on discoloration of different orthodontic ceramic, sapphire brackets and adhesives. Materials and methods: The sample composed of 120 ceramic brackets and 120 sapphire brackets, the brackets were divided according to bond material into three groups of 40 brackets include unbounded brackets, chemically cured (no-mix) bonded brackets and Light cured bonded brackets all these groups were further subdivided according to mouth wash type into three groups with 10 brackets each which include; Listerine, cetrimide, chlorhexidine 0.2%, and one control group which immersed in artificial saliva; then Staining measurements were performed with UV-Visibl
... Show MoreThe MTX was converted to MTX nanoparticles by the modified method based on changing the pH gradually . For the first time MTX NPs+Meropenem complex were prepared and evaluated as a potential tool to overcome antimicrobial resistance and to improve pharmacokinetics of the drug, the results showed that the antibacterial activity of complex (MTX NPs plus MEM) has increased (from 1( µg/ml) to >0.5( µg/ml) for p1 , from 2( µg/ml) to 1( µg/ml) for p10 and from 8( µg/ml) to 4( µg/ml) for p48).


