Background: In the traditional protocol, the patient should wait after extraction up to six months to place the dental implant in healed bone, this waiting time accompanied by varying degrees of alveolar bone changes. In order to overcome these problems, immediate implant placement in the fresh extraction socket was introduced. The Aim of this study was to evaluate the outcome of the immediate implant placement utilizing Resonance Frequency Analysis (RFA) to quantify implant stability and osseointegration. Materials and Methods: A total of (23) patients participated in the study, receiving (44) implants placed in the sockets of teeth indicated for extraction. Clinical and radiographic preoperative assessment was accomplished for each patient, β-TCP (combined with collagen membrane) was used to fill gaps ≥ (2 mm) and to repair bone defects. Implant stability quotient (ISQ) values were measured for the implants at baseline and at 16 weeks. Postoperative clinical and radiographic evaluation was applied for each patient. Results: A total of (22) patients received (41) implants completed the follow-up period, all these implants survived (100% survival rate) with no signs and symptoms of failure. The mean of ISQ value at baseline was (65.32±9.50), the mean of ISQ value at 16 weeks was (69.78±7.15), paired samples statistic showed high significant increase in the implant stability (P<0.01). Application of guided bone regeneration (GBR) showed no significant difference on ISQ value at baseline and at (16 weeks), but ISQ values increased significantly in GBR cases during the healing period. Conclusions: Immediate implant placement is a predictable treatment approach; it has the benefit of reducing treatment time and the numbers of surgical procedures when careful preoperative examination and appropriate intraoperative protocol is applied.
Due to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreBackground: the primary objective for many researches carried out in dental implantology was to reduce the period needed for functional implant loading, simvastatin (cholesterol lowering medication) had many pleiotropic effects, one of which was increasing bone density around titanium implants (1) and subsequently establishing faster osseointegrated dental implants (2,3). This study aims to reduce the period of time needed to establish secondary stability of dental implant measured in ISQ (Implant Stability Quotient) by investigating the effect of orally administered simvastatin on bone. Materials and methods: simvastatin tablets (40mg/day for three months) were administered orally for 11 healthy women aged (40-51) years old who received 1
... Show MoreAim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), a
... Show MoreBackground: The aims of this study were to evaluate the effect of implant site preparation in low-density bone using osseodensification method in terms of implant stability changes during the osseous healing period and peri-implant bone density using CBCT. Material and methods: This prospective observational clinical study included 24 patients who received 46 dental implants that were installed in low-density bone using the osseodensification method. CBCT was used to measure the bone density pre- and postoperatively and implant stability was measured using Periotest® immediately after implant insertion and then after 6 weeks and 12 weeks postoperatively. The data were analyzed using paired t-test and the probability value <0.05 was conside
... Show MoreObjective: Evaluation of the poly ether keton keton polymer (PEKK) coating material on the commercial pure titanium disks (CP Ti) with or without laser surface structuring. Design: In vitro experimental study of PEKK polymer coated material on the CP Ti disks with or without laser surface structuring. Materials and methods: coating the surface of the commercial pure titanium (CP Ti) disks with PEKK polymer was performed via using frictional mode CO2 laser, then the samples disks analyzed by using FESEM. Results: the FESEM reveal good adherence and distribution of the PEKK coated material over the CP Ti substrate by using the frictional mode CO2 laser at 2 watt and 6 ms pulse duration. Conclusion: the frictional mode CO2 laser considered an
... Show MoreBackground: Contact between implant material and bones must be strong and fast creation, to fulfill these properties appropriate surface modifications must apply on used implants. In this contribution; double surface modifications are applied on Ti-6Al-4V alloy to accelerate osseointegration. Materials and methods: Anodic process is utilized to create titania nanotubes (TNTs) on the screws made from Ti-6Al-4V alloy. These implants were coated with nano ZrO2 particles. Second modification was annealing anodized screws at 8000C, and implanted in tibiae of nine adult New Zealand white rabbits. Results: Physical and histological consequences of two surface modifications on Ti-6Al-4V alloy screws were studied. Scanning electron microscope (SEM)
... Show MoreBackground: It has been well known that the success of mandibular implant- retained overdenture heavily depends on initial stability, retention and long term osseointegration this is might be due to optimal stresses distribution in surrounding bones. Types of mandibular implant- retained overdenture anchorage system and number of dental implants play an important role in stresses distribution at the implant-bone interface. It is necessary to keep the stresses below the physiologic tolerance level of the bone .since. And it is difficult to measure these stresses around bone in vivo. In the present study, finite element analysis used to study the stresses distribution around dental implant supporting Mandible implant retained overdenture Mate
... Show MoreAn investigation was conducted to suggest relations for estimating yield and properties of the improved light lubricating oil fraction produced from furfural extraction process by using specified regression.
Mass transfer in mixer-settler has been studied. Mass transfer coefficient of continuous phase, mass transfer coefficient of dispersed phase and the overall mass transfer coefficient extraction of light lubes oil distillate fraction by furfural are calculated in addition to all physical properties of individual components and the extraction mixtures.
The effect of extraction variables were studied such as extraction temperature which ranges from 70 to 110°C and solvent to oil ratio which ranges from 1:1 to 4:1 (wt/wt
... Show More