Background: Platelet-rich fibrin (PRF) is a simple, low cost and minimally invasive way to obtain a natural concentration of autologous growth factors and is currently being widely experimented in different fields of medicine for its ability to aid the regeneration of tissue with a low healing potential. Fields of application are sports medicine, orthopedics, dentistry, dermatology, ophthalmology, plastic and maxillofacial surgery, etc. The rationale for using platelets in so many fields for the treatment of different tissues is because PLTs constitute a reservoir of critical GFs and cytokines, which may govern and regulate the tissue healing process that is quite similar in all kinds of tissues. Materials and Methods: Screw titanium implants inserted in the femurs of the thirty two adult rats. The right side is considered as experimental groups and the left side considered as control groups. Autologous platelet rich fibrin matrix applicated with the right screw implants . The sample divided into four groups, eight rats are sacrificed at four interval 3days, 7days, 2weeks, and 6weeks respectively. Histological, immunohistochemical (PDGF-A&IGF-1), and radio graphical were studied for each interval. Results: Histological examination showed the acceleration of bone formation and more rapid healing process in the screw implant with PRFM than in the control implant. Radio graphical examinations showed that the process of osseointegration started after 2weeks and complete radio opacity around the titanium implant after 6weeks. Immunohistochemical findings revealed high positive expression for IGF and PDGF in experimental implant in comparison to control one. Conclusion: This study was illustrated that PRFM material was osseo inductive material that enhances the osseointegration process in titanium implant site in comparison to the normal physiological healing process. The results show a positive effect of PRFM and it can be suggested for beneficial use in the practice of dentistry implantation, periodontics, oral surgery since it enhance osseointegration, reduce the period of patient suffering and the incidence of post implant complications.
Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreTo reduce the effects of discharging heated water disposed into a river flow by a single thermal source, two parameters were changed to get the minimum effect using optimization. The first parameter is to distribute the total flow of the heated water between two disposal points (double source) instead of one and the second is to change the distance between these two points. In order to achieve the solution, a two dimensional numerical model was developed to simulate and predict the changes in temperature distribution in the river due to disposal of the heated water using these two points of disposal.
MATLAB-7 software was used to build a program that could solve the governing partial equations of thermal pollution in rivers by using t
Biotreatment using immobilized cells (IC) technology has proved to be the most promising and most economical approach for the removal of many toxic organic pollutants found in petroleum-refinery wastewater (PRW) such as phenol. This study was undertaken to evaluate the degradation of phenol by Pseudomonas cells individually immobilized in two different bio-carrier matrices including polyvinyl alcohol-guar gum (PVA-GG) and polyvinyl alcohol-agar agar (PVA-AA). Results of batch experiments revealed that complete removal of phenol was attained in the first cycle after 150 min using immobilized cells (IC) in both PVA-GG and PVA-AA. Additional cycles were confirmed to evaluate the validity of recycling beads of immob
... Show MoreBackground: Self-medication is a practice or action taken by individuals for themselves in order to achieve and maintain health, as well as to avoid and protect against disease. The aim of this study is to evaluate the knowledge, attitudes, and practice of self-medication among medical students at Sudan International University.
Subjects & Methods: This was a prospective study that involved 288 out of 1000 students in the Faculty of Medicine at Sudan International University. Data were collected using a self-administered questionnaire from January to March 2022 to evaluate the self-medication knowledge, attitude, and practice among first, second, and third-ye
... Show MoreThe properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show MoreTiO2 thin films have been deposited at different concentration of
CdO of (x= 0.0, 0.05, 0.1, 0.15 and 0.2) Wt. % onto glass substrates
by pulsed laser deposition technique (PLD) using Nd-YAG laser
with λ=1064nm, energy=800mJ and number of shots=500. The
thickness of the film was 200nm. The films were annealed to
different annealing (423 and 523) k. The effect of annealing
temperatures and concentration of CdO on the structural and
photoluminescence (PL) properties were investigated. X-ray
diffraction (XRD) results reveals that the deposited TiO2(1-x)CdOx
thin films were polycrystalline with tetragonal structure and many
peaks were appeared at (110), (101), (111) and (211) planes with
preferred orientatio
Sol-gel derived CuCo-oxide coatings as solar selective surfaces, synthesized onto aluminium substrates at various annealing temperatures, are analysed by correlating their structural, chemical bonding states, and surface morphological topographies. As the annealing progressed, all the coatings displayed a Cu0.56Co2.44O4 (ICSD 78-2175) phase with preferential orientation along (400) reflection plane. Rietveld refinement of X-ray diffraction (XRD) data indicate that residual stress and microstrains developed around the coating surfaces are reduced resulting in mechanically stable thin films. Enhancement of the crystallite size and preferred orientation of the surface were confirmed via XRD, field emission scanning electron microscopy (FESEM),
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show More