Background: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins, Grp C: etching with 1.23% acidulated phosphate fluoride for 10 mins; monobond-plus, heliobond, resin composite(Tetric EvoCeram) were applied to each specimen according to manufacturer's instruction using transparent split mold(5mm diameter, 4 mm height); specimens were stored in 37OC distilled water for 12 weeks, 10 specimens of each group were subjected to thermocycling between 5 oC and 55 o C for 800 cycles with 30s dwell time; shear bond strength was determined by a universal testing machine (instron 1122) at a cross head speed 0.5mm/min; One way ANOVA test, LSD test and student-t test were used to analyze shear bond strength. Results: Mean shear bond strength values for the tested groups were: A1= 11.65±0.68 Mpa, A2=10.88±0.58 Mpa, B1=17.93±0.41 Mpa, B2=17.42±0.35 Mpa, C1=15.17±0.61 Mpa, C2=14.51±0.48 Mpa ; one way ANOVA test showed highly significant difference among groups; LSD test revealed that the use of 5% HF for ceramic surface treatment(GB) was highly significant than the treatment with 37%PA(GA) or 1.23%APF(GC) respectively and the use of 1.23%APF(GC) was highly significant than the use of 37%PA(GA); Student t- test showed a significant difference between subgroups of the same group with and without thermocycling. Conclusion: ceramic surface treated with 5% HF acid for 2 mins recorded the highest shear bond strength, followed by surface treatment with 1.23% APF for 10 mins, most specimens treated with 5%HF showed cohesive failure with in ceramic while specimens treated with 1.23%AFP showed more (adhesive/cohesive) failure than adhesive or cohesive alone, and specimens treated with 37% PA showed nearly 50:50 adhesive and combination failure, thermocycling reduced the bond strength of each group significantly
Anatomical changes in internal tissue of stem and leaf when seed and plant treated with acids to enhance growth and development in maize was studied during the spring seasons of 2019 and 2020. Randomized complete block design was used with three replications. Main plots received foliar nutrition treatments, including ascorbic acid (AA), citric acid (CA), and humic acid (HA) at concentrations of 100 mg L−1, alongside HA at 1 ml L−1, with distilled water as the control. Sub-plots underwent corresponding treatments for seed soaking. Results indicated variations in vascular bundle size among treatments, with foliar CA treatment showing superior results in both years, as well as seed soaking in CA and HA. Interaction effects were observed, n
... Show MoreBackground: The polymethyl methacrylate is the most reliable material for the construction of complete and partial dentures, despite satisfying esthetic demand itsuffered from having unsatisfactory properties like impact strength and transverse strength. This study was designed to improve the impact strength and transverse strength of heat cure acrylic resin by adding untreated and oxygen plasma treated polypropylene fibers and investigate the effect of this additive on some properties of acrylic resin materials. Materials and methods: Untreated and oxygen plasma treated polypropylene fibers was added to PMMA powder by weight 2.5 %. Specimens were constructed and divided into 5 groups according to the using tests; each group was subdivided
... Show MoreObjective(s): This study aims to evaluate the hardness of two commercially available cold cured acrylic resin material
(Vertex and PAN) when polymerized at different temperature in comparison to those polymerized by conventional
methods in air at 23C ± 5C.
Methodology: Eighty specimens, forty from cold cured acrylic (Vertex Type) and forty from cold cured acrylic (PAN
type) were prepared, flasking and packing procedure were done according to manufacturer direction and divided
according to processing as follow: 20 specimens (10 from Vertex type and 10 from PAN type) were processed in air for
two hours at 23C ± 5C under press (bench curing) as a control, and 60 specimens (30 from Vertex type and 30 from
PAN type) wer
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MoreBackground: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by
... Show MoreBackground: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were prepared wit
... Show MoreBackground: The goal of a root canal treatment is three dimensional obturation with a complete seal of the root canal system. The aim of this study was to evaluate and compare the effect of two warm obturation techniques, warm vertical compaction (WVC) and, carrier based obturation technique Gutta Core (GC), versus two cold obturation techniques, cold lateral compaction (CLC) and, single cone (SC) on push-out bond strength of bioceramic sealer (Total Fill) at three different root levels. Materials and Methods: Forty extracted maxillary first molars teeth with a straight round palatal root canal and mature apices were selected for this study. After sectioning the palatal roots to 11 mm from the root apex, the canals were
... Show MoreIn this work an approach has been developed to investigate the influence of surface roughness on thermohydrodynamic performance in aligned and misaligned journal bearings by considering an average flow model and deriving the shear flow factor for various roughness configurations, similar to the pressure flow factor. An average Reynolds equation for rough surfaces is defined in term of pressure and shear flow factors, which can be obtained by numerical flow simulation, though the use of measured or numerically generated rough surfaces. Reynolds, heat conduction and energy equations are solved simultaneously by using a suitable numerical technique (Finite Difference Method) to obtain the pressure and temperature di
... Show MoreRoller-Compacted Concrete (RCC) is a zero-slump concrete, with no forms, no reinforcing steel, no finishing and is wet enough to support compaction by vibratory rollers. Because the effectiveness of curing on properties and durability, the primary scope of this research is to study the effect of various curing methods (air curing, emulsified asphalt(flan coat) curing, 7 days water curing and permanent water curing) and different porcelanite (local material used as an Internal Curing agent) replacement percentages (volumetric replacement) of fine aggregate on some properties of RCC and to explore the possibility of introducing more practical RCC for road pavement with minimum requirement of curing. Cubes specimens were sawed from the slab
... Show MoreCeramic to metal joining technique, which was used in this investigation includes the use of active filler alloy as a sandwich between the alumina and kovar alloy for brazing. High purity powdered metals of silver, copper, and additives of titanium were used to prepare the active filler alloy, through compacting the mixed powders and alloying in a furnace with argon atmosphere at the temperature of 800oC for 10 minutes. To use it as an active filler metal, it has been modified to a proper thickness. Two groups of alumina were prepared with different sintering temperatures (1450oC and 1650oC) and each group was tested under atmospheric pressure, vacuum furnace pressure of 2*10-4 torr and vacuum furnace pressure of 2*10-6 torr. All the pro
... Show More