Background: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and porcelain were used and prepared for this study. Five specimens of each tooth type were processed to each denture base materials after the application of different surface treatments; these teeth were bonded to heat polymerized, nano composite resin and flexible denture bases. Specimens were thermo cycled and tested for bond strength until fracture with an Instron universal testing machine. Data were analyzed with analysis of variance and student T-test. Photomicrographic examinations were used to identify adhesive and cohesive failures within debonded specimens. Results: The mean force required to fracture the specimens were obviously larger for nanocomposite specimens compared with the heat cured and flexible specimens. The most common failure was cohesive within the tooth or the denture base. With each base material, the artificial teeth which were treated with thinner exhibited highest shear bond strength. Thermocycling had deleterious effect on the flexible denture base specimens. In general, nanocomposite and heat cured groups failed cohesively within the artificial tooth. While the valplastic groups failed adhesively at the tooth denture base interface. Conclusions: Within the limitations of this study, the type of denture base materials and surface treatments of the tooth selected for use may influence the shear bond strength of the tooth to the base. Selection of more compatible combinations of base and artificial teeth may reduce the number of prosthesis fractures and resultant repairs. Key words: acrylic teeth, porcelain teeth, Nano composite denture base, thermo cycling, flexible denture, thinner,
The effect of air injection angle on the performance of airlift pump used for water pumping has been studied analytically and experimentally. An airlift pump of dimensions 42mm diameter and 2200 mm length with conventional and modified air injection device was considered. A modification on conventional injection device (normal air-jacket type) was carried out by changing injection angle from 90 (for conventional) to 45 and 22.5 (for modified). Continuity and one-dimensional momentum balance for the flow field with basic principle of two-phase flow and expressions of slip ratio and friction factor as function of flow rates were formulated. The analytical and experimental investigations were carried out f
... Show MoreIn this work, corrosion parameters were evaluated using potentiodynamic polarization curves. In order to determine corrosion parameters of potential and current density of the interesting metal, carbon steel, environmental conditions of external corrosion of buried carbon steel pipeline in Iraqi soil were prepared in the laboratory using simulated prepared conditions. Solutions of sodium chloride at different concentrations (300, 1100, 1900, 2700, and 3500 ppm) were used. pH of solution were acidic at pH =5, and alkaline at pH = 9. Laboratory conditions were similar to those of Iraqi soil where the pipelines were buried. Temperature was constant at 20 °C. Potentiodynamic polarization curves, of potential vs. log current density, were ob
... Show MorePhoenix dactylifera l. pinnae (the green leaves of dates palm) were used as natural reinforcing (strengthening) fibers to improve the mechanical properties of polyester as a matrix material, the fibers of the green leaves of dates palm were used in two lengths, 10 and 20mm with five rates of 0, 2.5, 5, 10, and 20% , where the reinforcing with the leaves fibers increases the hardness strength from 76.5 to be about 86.55 , the Impact value raised from about 0.313 to 0.461 , in addition to that the flexural strength from 2.66 to be about 55 , and the thermal conductivity increases from 2.54 𝑤∕𝑚.℃ to 5.41 𝑤∕𝑚.℃. The results of the present search explains that the composite samples reinforced at rate 20% and 10mm fiber length
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MoreThe effect of saline magnetized water irrigation on seed germination and seedling growth of wheat cultivar Iraq were studied. Irrigation water was supplemented with different levels of Sodium chloride 6, 12 or 18 mmhos/ cm in addition control treatment, and passed through a proper magnetic felid with 1000, 1250, 1500 or 2000 gaus in addition control treatment. The results showed significantly stimulated shoot development and led to the increase of germination, seedling emergence, area leaf, length of shoot and root and fresh and dry weight compared to the controls. Results also showed significant interaction between saline water and magnetized water. So, using magnetic treatment of saline water could be a promising technique
... Show MoreEffect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.