Background: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs were prepared from the stock solution; all the experiments were conducted in vitro. Disk diffusion method was used to study the sensitivity of Streptococcus mutans to different concentrations of zinc oxide nanoparticles in comparison to effect of de-ionized water. Results: Streptococcus mutans were sensitive to concentrations (0.05, 0.1, 0.5, 1, 3 and 5.8) mg / ml of the zinc oxide nanoparticles solution in comparison to de-ionized water, revealing a highly significant difference in all concentrations except for concentration (0.01) mg / ml which was showed no significant difference in comparison to de-ionized water. Conclusion: This study revealed that zinc oxide nanoparticles were effective against Streptococcus mutans.
In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show More|
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
The research aims to know The Effect Of Flexible Grouping Strategy and Three Step Interview strategy on achievement of the history material among student of the first literary class, The Researcher used the experimental design of the two experimental groups and the control group and with post test, researcher group (a) represent the experimental group taught according the Flexible Grouping Strategy , and Division (c) to represent the second experimental group which studied according Three Step Interview strategy and Division (b ) to represent the control group taught in the traditional method, the number of students (99) students of (33) female students in each division. T
... Show Moreيعد علم التدريب الرياضي الحديث عملية تربوية علمية مبنية على اسس صحيحة هدفها وصول اللاعبين الى التكامل في الاداء الفني وهذا يتم عن طريق التأثير المنظم والدقيق بواسطة استعمال التمارين البدنية التي تحدث تغيرات خاصة في عمل اعضاء واجهزة جسم الرياضي والتي بدورها تؤدي الى رفع كفاءة الاعضاء والاجهزة لتحقيق الانجازات الرياضية العالية ولقد استعملت الباحثتان اسلوب حديث من اساليب التدريب الرياضي من اجل تطوير تحم
... Show MoreThis study aims to impact statement played by banking governance according to the decisions of the Basel Committee in achieving the strategic objectives of the banks, But order to achieve the this goal has been the adoption of two hypotheses in addition to the two main hypotheses as sub answered preliminary The study seeks to verify their health and two (no correlation relationship and impact between Banking governance and achieve strategic objectives), has been tested hypotheses. Study has reached
... Show MorePurepolyaniline and doped with hydrochloric acid was prepared in different molarities at room temperature. The a.c electrical properties were stadied.AC conductivityσac (ω), is found to vary as ωS in the frequency range (100Hz-10MH), S< 1and decreases indicating a dominate hopping process. Thedielectric constant ε1and dielectric loss ε2 have been determined for bulk polyaniline. ε1 decrease with the increase frequency. Electrical conductivity measurements increase with the increases both of the amount of HCl and the dose of radiation. The dielectric investigations show decrease with dose radiation.
Zinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the