Background: Obesity and dental caries are multifactorial diseases related to poor eating habits and show a close relationship with the sociodemographic characteristics of individuals presenting these diseases. This research aimed to investigate the severity of dental caries among group of obese boys aged 12 year in relation to salivary interleukin-6 (IL-6) and C-reactive protein (CRP) of unstimulated whole saliva in comparison with normal weighted boys of the same age. Materials and Methods: The study group included 40 obese boys, with an age of 12 year. The control group included 40 normal weighted boys of the same age. The total sample involved for nutritional status assessment using Body Mass Index specific for age and gender according to CDC growth chart (2000). The diagnosis and recording of dental caries conducted by using (D1-4MFS and d1-4mfs) index according to the criteria of Muhlemann (1976). The collection of unstimulated whole saliva was performed under standardized condition. Salivary samples were chemically analyzed for measuring IL-6 and CRP. Results: The caries experience among study group was lower than that among control group for both dentitions, with significant differences for D2, ds and dmfs and highly significant difference for d4. Salivary inflammatory biomarkers (IL-6, hs-CRP) were slightly higher among study group compared with control group with no significant difference between them. Salivary IL-6 and hs-CRP were negatively correlated with dental caries of both dentitions among study group with significant correlation between IL-6 and D2, while they were correlated positively with dental caries of both dentitions among control group with highly significant correlation between IL-6 and D3 and significant correlation between IL-6 and d4. Conclusion: Obesity and dental caries are associated with increased levels of salivary interleukine-6 and C-reactive protein, this making both obesity and dental caries as a state of inflammation that exacerbating immune responses in the body. Key words: Obesity, salivary cytokines, interleukine-6, C-reactive protein.
One of the most difficult tasks in modern medical societies is the process of identifying a cure for many infectious diseases caused by drug-resistant microbes. Therefore, it has become necessary to discover new compounds that work in this regard. The currently prepared Schiff base, derived from thiazole, has a biological activity against bacteria and biofilms and its activity increases when it is associated with copper, zinc and platinum ions and forms metal complexes. This study highlights the synthesis and evaluation of novel biological compounds as inhibitors of bacterial growth and biofilms. A three newly complexes are resulting from the reaction of a new Schiff base ligand (LC) with metal ions (Zn, Cu, Pt). The new ligand (LC)
... Show MoreExperimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This study presents the debonding propagation in single NiTi wire shape memory alloy into linear low-density polyethylene matrix composite the study of using the pull-out test. The aim of this study is to investigate the pull-out tests to check the interfacial strength of the polymer composite in two cases, with activation NiTinol wire and without activation. In this study, shape memory alloy NiTinol wire 2 mm diameter and linear fully annealed straight shape were used. The study involved experimental and finite element analysis and eventually comparison between them. This pull-out test is considered a substantial test because its results have a relation with behavior of smart composite materials. The pull-out test was carried out by a u
... Show MoreNovel derivatives of 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole and 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole carrying Schiff bases moiety were synthesised and fully characterised. The protection of D- fructose using benzoyl chloride was synthesized, followed by nucleophilic addition/elimination between benzotria- zole and chloroacetyl chloride to give 1-(1- chloroacetyl)- 1H-benzotriazole. The next step was condensation reaction of protected fructose and 1-(1-chloroacetyl)-1H- benzotriazole producing a new nucleoside analogue. The novel nucleoside analogues underwent a second conden- sation reaction with different aromatic and aliphatic amines to provide new Schiff b
... Show MoreA new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.