Nanotechnology extends the limits of molecular diagnostics to the nanoscale. This study describes some of the details of how the body interacts with nanoparticles. Biological tests measuring the presence or activity of selected substances become quicker, more sensitive, and more flexible when certain nanoscale particles are put to work as tags. Particular emphasis is placed on the effects of surface changes on body-borne particles, their transport within the body, and the dose-response effect. Other considerations include the definition of "persistent" in the context of therapy, FDA scientific committees, and the need for nanoparticle tracking. In short, there have been dramatic changes in molecular and genetic research findings, as well as in diagnostics and therapy using nanotechnology. Numerous ethical challenges and concerns, including biocompatibility, biodistribution, and long-term toxicity, among others, accompany this. A careful and critical consideration of these challenges and concerns will lead to the improvement and design of "best fit" nanomaterials for molecular genetics and the treatment of genetic disorders.
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Carbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreWe report here an innovative feature of green nanotechnology-focused work showing that mangiferin—a glucose functionalized xanthonoid, found in abundance in mango peels—serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF-198AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors
... Show MoreInefficient wastewater disposal and wastewater discharge problems in water bodies have led to increasing pollution in water bodies. Pollutants in the river contribute to increasing the biological oxygen demand (BOD), total suspended solids (SS), total dissolved solids (TDS), chemical oxygen demand (COD), and toxic metals render this water unsuitable for consumption and even pose a significant risk to human health. Over the last few years, water conservation has been the subject of growing awareness and concern throughout the world, so this research focused on review studies of researches that studied the importance of water quality of wastewater treated disposal in water bodies and modern technology to management w
... Show MoreABSTRACT: Oxadiazole ring is a heterocyclic molecule with an oxygen and two nitrogen atoms spread throughout its five-membered structure. There are four different isomers that have been discovered, Because of their wide applications in a range of sectors, including medications . Some of these biological activity are; anticonvulsant capacity, anticancer as well, antibacterial, antiviral, antifungal, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and anti-inflammatory, are just some of the therapeutic uses that have drawn attention to drug candidates containing an oxadiazole moiety. This review, we will examine the various methods of oxadiazole synthesis. The mo
... Show MoreHistorically, medicinal herbs have been utilized as an important origin of chemicals with particular therapeutic potentials, and they continue to be a great place to find new medication candidates. Parthenocissus quinquefolia L. is a member of the grape-growing family Vitaceae. It is indigenous to Central and North America. It is widely dispersed in Iraqi gardens and plant houses from north to south. Traditionally, it has many uses, like relieving constipation, treating jaundice, expectorant, emetic, and others. At the same time, its proven activities include antioxidant activity, antimicrobial, anti-diabetic, thrombin inhibitor effect, and medicine for treating eyelid eczema. Parthenocissus quinquefolia contains valuable phytochemicals lik
... Show MoreBegomoviruses infecting zucchini squash were investigated. Leaf samples were collected from zucchini squash growing areas in Baghdad (Jhadryaa and Yusufiyah), Babylon (Jibela and Mahmudiyah) and Diyala (Khan Bani Saad) Provinces. Samples were screened for the presence of begomoviruses using polymerase chain reaction (PCR) and Deng genus specific primers. Sixteen out of 40 samples were begomovirus positive. Sequence analysis confirmed the detection of Tomato leaf curl Palampur virus (TLCPALV)