Introduction The abortions reasons in several circumstances yet are mysterious, nevertheless the bacterial toxicities signify a main reason in abortion, where germs seems to be the utmost elaborate pathogens (Khameneh et.al., 2014) and (Oliver and Overton ,2014). Between numerous germs, Humano
This study was conducted at the College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad. The aim of this study was to isolate and diagnose fungi from fish feedstuff samples, and also detection of aflatoxin B1 and ochratoxin A in fish muscles and feedstuffs. Randomly, the samples were collected from some fish farms from Baghdad, Babil, Wasit, Anbar, and Salah al-Din provinces. This study included the collection of 35 feedstuff samples and 70 fish muscle samples, and each of the two fish samples fed on one sample of the feedstuff. The results showed the presence of several genera of different fungi including Aspergillus spp, Mucor spp., Penicillium spp., Yeast spp., Fusarium spp., Rhizopus spp., Scopiolariopsis spp., Ep
... Show MoreAbstract
Objective: To assess pregnant women Knowledge toward Urinary Tract Infection at Kirkuk City.
Methodology: A descriptive and analytical study was conducted from 1st of November 2013 and up to the 19 th of August 2014 in five typical primary health care centers at Kirkuk City. A Probability (randomly sample) was used to select the sample of 180 women aged (15-44) years. A questionnaire format was used as a tool for data collection , content validity of the questionnaire achieved through reviewing it by (24) experts in numerous scientific fields and reliability of the questionnaire was determined through a pilot study. Descriptive and inferential statistics were used to analyze the data.
Resul
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show More