Preferred Language
Articles
/
jRd2kZABVTCNdQwCUY3p
Active Learning And Creative Thinking
...Show More Authors

Active Learning And Creative Thinking

Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Lecture Notes Of The Institute For Computer Sciences, Social Informatics And Telecommunications Engineering
Sensor Data Classification for the Indication of Lameness in Sheep
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Editorial: Current advances in anti-infective strategies
...Show More Authors

Infectious diseases pose a global challenge, necessitating an exploration of novel methodologies for diagnostics and treatments. Since the onset of the most recent pandemic, COVID-19, which was initially identified as a worldwide health crisis, numerous countries experienced profound disruptions in their healthcare systems. To combat the spread of the COVID-19 pandemic, governments across the globe have mobilized significant efforts and resources to develop treatments and vaccines. Researchers have put forth a multitude of approaches for COVID-19 detection, treatment protocols, and vaccine development, including groundbreaking mRNA technology, among others.

This matter represents not only a scientific endeavor but also an essenti

... Show More
View Publication Preview PDF
Publication Date
Sat May 09 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
The Role of Human Resources Strategic Management on Enhancing Talent Success Factors; Exploratory analytical research in the General Authority for Tourism
...Show More Authors

The research aims to verify the role of the Human Resources Strategic Management (HRSM) in enhancing the strategic success factors for talent (SSFT) in the General Tourism Authority by distributing a questionnaire consisting of (36) paragraphs on an intentional sample represented by the higher departments as it reached (50) and the sample valid for testing was (44) Person and to test the relationships between the two research variables, the researchers used statistical methods represented by (Bartlett test / mean / simple regression coefficient / difference coefficient, alpha- cronbachAch, confirmatory factor Analysis ) through the statistical program (SPSS v.23 & AMOS v.23). In enhancing the factors of success for talent management in the

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Engineering
A Impact of High Voltage Direct Current Link on Transmission Line in Kurdistan Power System
...Show More Authors

Kurdistan power system is expanded along years ago. The electrical power is transmitted through long transmission lines. The main problem of transmission lines is active and reactive power losses. It is important to solve this issue, unless, the most of electrical energy will lost over transmission system. In this study, High Voltage Direct Current links/bipolar connection were connected in a power system to reduce the power losses. The 132kV, 50 Hz, 36 buses Kurdistan power system is used as a study case. The load flow analysis was implemented by using ETAP.16 program in which Newton-Raphson method for three cases. The results show that the losses are reduced after inserted HVDC links.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach
...Show More Authors

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Impact of Twitter Sentiment Related to Bitcoin on Stock Price Returns
...Show More Authors

Twitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM

... Show More
View Publication Preview PDF
Crossref (5)
Crossref