The need for an efficient method to find the furthermost appropriate document corresponding to a particular search query has become crucial due to the exponential development in the number of papers that are now readily available to us on the web. The vector space model (VSM) a perfect model used in “information retrieval”, represents these words as a vector in space and gives them weights via a popular weighting method known as term frequency inverse document frequency (TF-IDF). In this research, work has been proposed to retrieve the most relevant document focused on representing documents and queries as vectors comprising average term term frequency inverse sentence frequency (TF-ISF) weights instead of representing them as vectors of term TF-IDF weight and two basic and effective similarity measures: Cosine and Jaccard were used. Using the MS MARCO dataset, this article analyzes and assesses the retrieval effectiveness of the TF-ISF weighting scheme. The result shows that the TF-ISF model with the Cosine similarity measure retrieves more relevant documents. The model was evaluated against the conventional TF-ISF technique and shows that it performs significantly better on MS MARCO data (Microsoft-curated data of Bing queries).
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreThe automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show MoreThe present study is concerned with the role of income tax in implementing economic goals in Iraq and treating the problems and pitfalls in the Iraq economy.
The study also aims at investigating the role of income tax in attracting promising favorite effects into economy.
The study was performed on data covering the period (2003 - 2012) with respect to the variables of (income tax, oil profits) as independent variables and (private consuming expenditure, private investmental expenditure, and standard figure of prices) as dependent variables. To analyze these data, a number of statistical descriptive and analytical techniques were used such as (percentage, standard variance, mediums, F test, T test and SPSS). It has been c
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreEntropy define as uncertainty measure has been transfared by using the cumulative distribution function and reliability function for the Burr type – xii. In the case of data which suffer from volatility to build a model the probability distribution on every failure of a sample after achieving limitations function, probabilistic distribution. Has been derived formula probability distribution of the new transfer application entropy on the probability distribution of continuous Burr Type-XII and tested a new function and found that it achieved the conditions function probability, been derived mean and function probabilistic aggregate in order to be approved in the generation of data for the purpose of implementation of simulation
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreThis research aims to investigate the color distribution of a huge sample of 613654 galaxies from the Sloan Digital Sky Survey (SDSS). Those galaxies are at a redshift of 0.001 - 0.5 and have magnitudes of g = 17 - 20. Five subsamples of galaxies at redshifts of (0.001 - 0.1), (0.1 - 0.2), (0.2 - 0.3), (0.3 - 0.4) and (0.4 - 0.5) have been extracted from the main sample. The color distributions (u-g), (g-r) and (u-r) have been produced and analysed using a Matlab code for the main sample as well as all five subsamples. Then a bimodal Gaussian fit to color distributions of data that have been carried out using minimum chi-square in Microsoft Office Excel. The results showed that the color distributions of the main sample and
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreMany of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3