A comparison study was made for the reaction of triruthenium carbonyl Ru3(CO)12 with azoarene ArN=NAr . This reaction was monitored in two kinds of solvents , toluene , and n- octane , which yielded new triruthenium carbonyl complex Ru3(μ3-NAr)2(CO)9 . The reactions of azoarenes ArN=NAr with Ru3(CO)12 formed the following trinuclear compound of Ru3((μ3- NAr)2(CO)9 (Ar-C6H4Br-4) in law yield . In addition , to new isomers species of mononuclear cyclometallated of Ru(BrC6H4N-NC6H4NBr-4)2(CO)2 in different percentages . The mechanism of the reaction domenstrates that the formation of trinuclear bis arylimido complexes , and ortho metallated was , the result of cleavage of nitrogen –nitrogen bond . Monitoring this gave evidence that the reaction is preceded faster in presence of n-octane and slowly in presence of toluene . The proposed structure of bis –aryl imido tri-ruthenium complex was based on the results of instrumental analysis .
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
يلعب القطاع الصناعي التحويلي في أي قطر دوراً هاماً في تحقيق التنمية الصناعية، اذ تتحد تاثيراته فيها على طبيعة الدور المرسوم له وعلى مدى فاعلية هذا القطاع الحيوي الذي يعد اتجاه نحو التعاظم المضطرد لمستويات الانتاجية " Levels of productivity"والتنويع الانتاجي والتدفق المستمر للتجديد التكنولوجي من اهم دلائله.
ويعد مؤشر الانتاجية بصفة عامة وانتاجيتي العمل وراس المال بصفة خاصة من الم
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show More