In many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally that the speed up of the proposed method compared with traditional approaches approximately reaches up to 20 times depending on the block parameters.
Worldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, co
... Show MoreCloud-based Electronic Health Records (EHRs) have seen a substantial increase in usage in recent years, especially for remote patient monitoring. Researchers are interested in investigating the use of Healthcare 4.0 in smart cities. This involves using Internet of Things (IoT) devices and cloud computing to remotely access medical processes. Healthcare 4.0 focuses on the systematic gathering, merging, transmission, sharing, and retention of medical information at regular intervals. Protecting the confidential and private information of patients presents several challenges in terms of thwarting illegal intrusion by hackers. Therefore, it is essential to prioritize the protection of patient medical data that is stored, accessed, and shared on
... Show MoreThis study aimed to determine the optimal conditions for extracting basil seed gum in addition to determine the chemical components of basil seeds. Additionally, the study aimed to investigate the effect of the mixing ratio of gum to ethanol when deposited on the basis of the gum yield which was1:1, 1:2, 1:3 (v/v) respectively. The best mixing ratio was one size of gum to two sizes of ethanol, which recorded the highest yield. Based on the earlier, the optimal conditions for extracting basil seed gum in different levels which included pH, temperature, mixing ratio seeds: water and the soaking duration were studied. The optimal conditions were: pH 8, temperature of 60°C, mixing ratio seeds: water 1:65 (w/v) and soaking duration of 30 min
... Show More<span>Deepfakes have become possible using artificial intelligence techniques, replacing one person’s face with another person’s face (primarily a public figure), making the latter do or say things he would not have done. Therefore, contributing to a solution for video credibility has become a critical goal that we will address in this paper. Our work exploits the visible artifacts (blur inconsistencies) which are generated by the manipulation process. We analyze focus quality and its ability to detect these artifacts. Focus measure operators in this paper include image Laplacian and image gradient groups, which are very fast to compute and do not need a large dataset for training. The results showed that i) the Laplacian
... Show MoreThe proposed design of neural network in this article is based on new accurate approach for training by unconstrained optimization, especially update quasi-Newton methods are perhaps the most popular general-purpose algorithms. A limited memory BFGS algorithm is presented for solving large-scale symmetric nonlinear equations, where a line search technique without derivative information is used. On each iteration, the updated approximations of Hessian matrix satisfy the quasi-Newton form, which traditionally served as the basis for quasi-Newton methods. On the basis of the quadratic model used in this article, we add a new update of quasi-Newton form. One innovative features of this form's is its ability to estimate the energy functio
... Show More
