Preferred Language
Articles
/
jBf2UZEBVTCNdQwCM5QK
A Hybrid Meta-Heuristic Approach for Test Case Prioritization and Optimization
...Show More Authors

The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the capabilities of considering the imperatives such as code coverage, fault finding rate and execution time from search algorithms in our hybrid approach to refine test cases considerations repetitively. The strategy accomplished this by putting experiments on a large-scale project of industrial software developed. The hybrid meta-heuristic technique ends up being better than the routine techniques. It helps in higher code coverage, which, in turn, enables to detect crucial defects at an early stage and also to allocate the testing resources in a better way. In particular, the best APFD value was 0.9321, which was achieved in 6 generations with 4.879 seconds the value to which the computer was run. Besides these, , the approach resulted in the mean value of APFD as 0.9247 and 0.9302 seconds which took from 10.509 seconds to 30.372 seconds. The carried out experiment proves the feasibility of this approach in implementing complex systems and consistently detecting the changes, enabling it to adapt to rapidly changing systems. In the end, this research provides us with a new hybrid meta-heuristic way of test case prioritization and optimization, which, in turn, helps to tackle the obstacles caused by large-scale test cases and constantly changing systems.

Scopus Crossref
View Publication
Publication Date
Wed Nov 14 2018
Journal Name
Fiber And Integrated Optics
Design Investigation of 2 × 2 Mach–Zehnder Optical Switch Based on a Metal–Polymer–Silicon Hybrid Plasmonic Waveguide
...Show More Authors

In this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Performance Evaluation of Pole Placement and Linear Quadratic Regulator Strategies Designed for Mass-Spring-Damper System Based on Simulated Annealing and Ant Colony Optimization
...Show More Authors

This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Educational And Psychological Researches
Item Difficulty and Item Discrimination Coefficient for School and College Ability Tests (SCAT) Advanced Form in Classical Test Theory (CTT) and Item Response Theory (IRT) and the Correlation among Them
...Show More Authors

Item Difficulty and Item Discrimination Coefficient for School and College Ability Tests (SCAT) Advanced Form in Classical Test Theory (CTT) and Item Response Theory (IRT) and the Correlation among Them Mohammad moqasqas Haifa T. Albokai Assistant Professor of Measurement and Evaluation Associate Professor of Measurement and Evaluation College of Education, Taibah University The aim of this study was to study the item difficulty and item discrimination of the SCAT (advance form) with CTT, and IRT, and to study the correlation among them. To do this, the researchers used the data of their previous study, which conducted in (2011). It consisted of (3943) subject. Then, they used two-statistical programs (TAP, Bilog-MG-3) to obtain the item

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
International Journal Of Advanced Intelligence Paradigms
Assessing IRPS as an efficient pairwise test data generation strategy
...Show More Authors

View Publication
Scopus (10)
Crossref (9)
Scopus Crossref
Publication Date
Mon Feb 13 2023
Journal Name
Journal Of Educational And Psychological Researches
Developing an Achievement Test in Light of the Specifications Table
...Show More Authors

Abstract

The research addresses the specification table and the extent of its use in developing achievement tests, as well as detects the obstacles to its use through a sample of (120) respondents from the faculty members in some Baghdad schools and colleges. After unpacking and processing the data statistically, the research reached several results: the study sample do not use the test map in the development of their tests, as their percentage reached (82%) and there are no statistically significant differences in the use of the specification table by the sample members according to their place of work or the number of years of experience. The results also revealed the most important reasons that prevent the use

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Harnessing Innovative Solutions for Achieving Continuous Quality Improvement Requirements in Water Treatment Plants: A Case Study of Continuous Quality Improvement in Baghdad Water Authority.
...Show More Authors

Abstract

This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Modified Elman Neural-PID Controller Design for DC-DC Buck Converter System Based on Dolphin Echolocation Optimization
...Show More Authors

This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Civil Engineering Journal
Time-Cost-Quality Trade-off Model for Optimal Pile Type Selection Using Discrete Particle Swarm Optimization Algorithm
...Show More Authors

The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with t

... Show More
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Journal Of Engineering Science And Technology
Applying box-behnken design with statistical optimization for removal vat orange dye from aqueous solution using kaolin
...Show More Authors

Scopus (4)
Scopus
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF