<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>
The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MorePurpose: The research seeks to develop the implications of intellectual human capital, and social capital in business organizations, and will be accomplished on three levels, the first level (the level of description) to identify, diagnose and display content philosophical Strategic Human Resource Management at the thought of modern administrative represented by human capital and Ras social capital. The second level (level of analysis) and the analysis of the extent of the impact of alignment between human capital, and social capital in the organizational strength of the organizations. The third level (Level predict) the formulation of a plan to strengthen the organizational strength in business organizations and to develop speci
... Show MoreThis work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different video
... Show MoreThis study was conducted to determine the fungal cause and bio control of damping off and root rot of wheat plants by using pseudomonas fluorescens under greenhouse and field conditions. Results showed isolation of eight species from the soil and roots to deferent region of Baghdad government. Rhizoctonia solani (Rs) and Fusarium solani (Fs) were the predominant damping off fungus with frequency 60 and 52% respectively. Led the using of bacteria formulations such as crud suspension , pure bacteria filtration and pure living cells in culture medium inhibit all type fungi with rates ranging from 84-96% , 80- 93% and 75-88% respectively. Rs and Fs were more pathogenesis under greenhouse conditions, with incidence of 80 and 68% and disease s
... Show MoreBackground: Background : Patients with non-rheumatic atrial fibrillation have high risk of thromboembolism especially ischemic stroke usually arising from left atrial appendage .Transoesophageal echocardiography provides useful information for risk stratification in these patients as it detects thrombus in the left atrial or left atrial appendage. Objective : This study was conducted at Al-Kadhimiya Teaching Hospital to assess the prevalence of left atrial chamber thrombi in patients with chronic non-rheumatic atrial fibrillation using transoesophageal echocardiography and its clinical significance as well as to verify the superiority of transoesophageal over transthoracic echocardiography in the detection of these abnormalities. Type of
... Show MoreBackground: Measuring implant stability is an important issue in predicting treatment success. Dental implant stability is usually measured through resonance frequency analysis (RFA). Osstell® RFA devices can be used with transducers (Smartpeg™) that correspond to the implants used as well as with transducers designed for application with Penguin® RFA devices (Multipeg™). Aims: This study aims to assess the reliability of a MultiPeg™ transducer with an Osstell® device in measuring dental implant stability. Materials and Methods: Sixteen healthy participants who required dental implant treatment were enrolled in this study. Implant stability was measured by using an Osstell® device with two transducers, namely, Smartpeg™ and M
... Show MoreNowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show More