Motifs template is the input for many bioinformatics systems such codons finding, transcription, transaction, sequential pattern miner, and bioinformatics databases analysis. The size of motifs arranged from one base up to several Mega bases, therefore, the typing errors increase according to the size of motifs. In addition, when the structures motifs are submitted to bioinformatics systems, the specifications of motifs components are required, i.e. the simple motifs, gaps, and the lower bound and upper bound of each gap. The motifs can be of DNA, RNA, or Protein. In this research, a motif parser and visualization module is designed depending on a proposed a context free grammar, CFG, and colors human recognition system. GFC describes the motif structure to parse the motifs, detect, debug the errors, and analyze the motifs template to its components. Many experiments are accomplished using motifs templates of various sizes arranged from 10 Kbase to 10 Mbase, various numbers of gaps arranged from 15 gaps to 15000 gaps, and different numbers of errors arranged from 100 errors to 1820 errors. The proposed systems, in all these experiments, exhibited linear behavior in parsing phase and visualization phase that indicates its scalability to motifs template sizes.
The present study reports Morchella conica Pers.1818, which belongs to the family, Morchellaceae as a new record of Iraqi macromycota based on the morphological and molecular methods. During their short and often sporadic fruiting season, this fungal species was found in mixed forest unburned areas in Branan ranges (Suliamaniya Province, Northeast Iraq). Currently, M. conica is the second Morchella species reported from Iraq. The current study aimed to introduce this new record, which is poorly studied in the Middle East. M. conica is morphologically described and phylogenetically confirmed. The relationship between this species and other species within the genus was studied using the nrDNA ITS sequences from different species and divers
... Show MoreHerein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the
Background: Obesity and dental caries are multifactorial diseases related to poor eating habits and show a close relationship with the sociodemographic characteristics of individuals presenting these diseases. This research aimed to investigate the severity of dental caries among group of obese boys aged 12 year in relation to salivary interleukin-6 (IL-6) and C-reactive protein (CRP) of unstimulated whole saliva in comparison with normal weighted boys of the same age. Materials and Methods: The study group included 40 obese boys, with an age of 12 year. The control group included 40 normal weighted boys of the same age. The total sample involved for nutritional status assessment using Body Mass Index specific for age and gender according t
... Show MoreIn this study water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals) using N-acetyl cysteine as a stabilizer were prepared to investigate the utility of quantum dots (QDs) in distinguishing damaged DNA, (extracted from blood samples of leukaemia patients), from intact DNA (extracted from blood samples of healthy individuals) to be used for biosensing application. Based on the optical characterization of the prepared QDs, the XRD results revealed the formation of the NAC-CdTe-QDs with a grain size of 7.1nm. Whereas, the SEM test showed that the spherical size of the NAC-CdTe-QDs lies within 11~33nm. NAC-CdTe-QDs have superior PL emission properties at of 550nm and UV-Vis absorption peak at 300nm. The energy gap
... Show More