In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and introduced. Optimal results showed that the optimum viscosity and thermal conductivity occurs at maximum temperature.
The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme
... Show MoreIn this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
Complexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4 tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3)The prepared
The aim of this work covers the synthesis and characterization of the new tertra dentate ligand (H4L) containing (N and O) as donor set atoms kind (N2O2) where: H4L=Bis-1,2 (2,4- dihydroxybenzylediene phylinediamine . The preparation of ligand contains reaction 2, 4 - Dihydroxy benzaldehyde and o-phenylene diamine . Schiff base was reacted with some metal ions in the presence of methanol to give the complexes in the general formula [M (H2L)] where: MII = Co, Ni, Cu, Zn, Cd. All compounds were characterized by spectroscopic methods I.R , U.V.-Vis, metal content and molar conductivity measurements, showed that the complexes are non-electrolyte. The proposed geometry for all of the proposed complexes was a tetrahedral while Ni complex was squa
... Show Morebstract The aim of this work covers the synthesis and characterization of the new tertra dentate ligand (H4L) containing (N and O) as donor set atoms kind (N2O2) where: H4L=Bis-1,2 (2,4- dihydroxybenzylediene phylinediamine . The preparation of ligand contains reaction 2, 4 - Dihydroxy benzaldehyde and o-phenylene diamine . Schiff base was reacted with some metal ions in the presence of methanol to give the complexes in the general formula [M (H2L)] where: MII = Co, Ni, Cu, Zn, Cd. All compounds were characterized by spectroscopic methods I.R , U.V.-Vis, metal content and molar conductivity measurements, showed that the complexes are non-electrolyte. The proposed geometry for all of the proposed complexes was a tetrahedral while Ni complex
... Show MoreThe Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FTIR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2 -) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine by KOH (Ala
... Show MoreMixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.
Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.
to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure
... Show MoreA new Schiff base ligand [L] [3-methyl-9,10 phenyl -6,7 dihydro-5,8 –dioxo-1,2 diazo –cyclo dodecu 2,11-diene ,4-one ] and its complexes with (Co(II), Ni(II), Cu (II), Zn(II) and Cd(II)) were synthesis.This ligand was prepared in three steps, in the first step a solution of salicyladehyed in methanol reacted under refluxed with hydrazine monohydrate to give an (intermediate compound 1) which reacted in the second step with sodium pyruvate to give an (intermediate compound 2) which gave the ligand [L] in the three step when it reacted with 1,2- dichloro ethane.The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [IR, UV-
... Show More