In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and introduced. Optimal results showed that the optimum viscosity and thermal conductivity occurs at maximum temperature.
Complexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4 tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3)The prepared
The Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FTIR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2 -) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine by KOH (Ala
... Show MorePreviously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of t
... Show MoreA new Schiff base ligand [L] [3-methyl-9,10 phenyl -6,7 dihydro-5,8 –dioxo-1,2 diazo –cyclo dodecu 2,11-diene ,4-one ] and its complexes with (Co(II), Ni(II), Cu (II), Zn(II) and Cd(II)) were synthesis.This ligand was prepared in three steps, in the first step a solution of salicyladehyed in methanol reacted under refluxed with hydrazine monohydrate to give an (intermediate compound 1) which reacted in the second step with sodium pyruvate to give an (intermediate compound 2) which gave the ligand [L] in the three step when it reacted with 1,2- dichloro ethane.The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [IR, UV-
... Show MoreIn this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.
In this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.
bstract The aim of this work covers the synthesis and characterization of the new tertra dentate ligand (H4L) containing (N and O) as donor set atoms kind (N2O2) where: H4L=Bis-1,2 (2,4- dihydroxybenzylediene phylinediamine . The preparation of ligand contains reaction 2, 4 - Dihydroxy benzaldehyde and o-phenylene diamine . Schiff base was reacted with some metal ions in the presence of methanol to give the complexes in the general formula [M (H2L)] where: MII = Co, Ni, Cu, Zn, Cd. All compounds were characterized by spectroscopic methods I.R , U.V.-Vis, metal content and molar conductivity measurements, showed that the complexes are non-electrolyte. The proposed geometry for all of the proposed complexes was a tetrahedral while Ni complex
... Show More
