During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreSolanum americanum is a new annual shrubby plant seen recently in fields and gardens of Baghdad city. A new species is described and illustrated, inhabit wet or semi dry places and have consequently a mesophytic habit. A detailed morphological study of the stems, leaves, Inflorescence, flower, male and female reproductive organs and fruits has been done, revealed several interesting taxonomic characteristics, which have not previously been studied in Iraq. Also, anatomical studies reveals constant taxonomical characteristics such as the presence of anthocayanine in outer row of epidermis, distinct chlorenchyma in whole cortex, the wide pith of stems, and presence of distinct mesophyll that differentiated into palisade layer and spongy laye
... Show MoreTrialeurodes irakensis sp. n. is describe and illustrated from Iraq. T.vaporariorurn (westwood)
is reported and for the first time for the Iraqi fauna. A ke to species of Trialeurodes found in
Iraq is presented.
This research includes a detaile description of new species Rhyncomya irakensis sp. nov.
from Iraq.
Localities distribution, host plants and data of collection were recorded.
This study includes a detailed morphological description of Cosmina baghdadensis sp. nov.
from Iraq.
Many characters are used in identification especially chaetotaxy and male genetalia.
Locality, host plant, and data of collection were given.
When exercising their authority in the jurisprudence, judges are subject to a set of restrictions that they must adhere to, as they do not want their jurisprudence to be accepted and welcomed by law practitioners in general, and legal scholars in particular, and in contrast to it, the arrows of criticism and defamation will extend to that jurisprudence, and then they will have to reverse them . Perhaps the most important of those restrictions imposed on judges is their observance of justice between the parties to the lawsuit through their lack of bias for one of the parties at the expense of the other, in addition to their observance of public order and public morals, as well as their observance of the legal texts that they work under its u
... Show MoreTwitter data analysis is an emerging field of research that utilizes data collected from Twitter to address many issues such as disaster response, sentiment analysis, and demographic studies. The success of data analysis relies on collecting accurate and representative data of the studied group or phenomena to get the best results. Various twitter analysis applications rely on collecting the locations of the users sending the tweets, but this information is not always available. There are several attempts at estimating location based aspects of a tweet. However, there is a lack of attempts on investigating the data collection methods that are focused on location. In this paper, we investigate the two methods for obtaining location-based dat
... Show MoreBackground: Animal bite is one of the public health problems all over the world, especially in poor countries. Animal bites have an impact on human health due to rabies disease, which is a viral transmitted disease from animal to human with a high mortality rate.
Objective: To determine the epidemiological characteristics of animal bite cases by person, time, and place.
Method: Descriptive cross sectional study was done by reviewing cases caused by animal bites., Data including the demographic characteristics of age, gender, occupation, site of bite, and attending health institutions searching treatment were all included.
Results: There were 11600 animal bite cases. Most of bites caused by stray dogs 11577(99.8%), and the males