In this study, two active galaxies (NGC4725, NGC4639) have been chosen to study their morphological and photometric properties, by using the IRAF ISOPHOTE ELLIPS task with griz-filters. Observations are obtained from the Sloan Digital Sky Survey (SDSS) which reaches now to the DATA Release (DR14). The data reduction of all images (bias and flat field) has been done by SDSS Pipeline. The surface photometric investigation was performed like the magnitude. Together with isophotal contour maps, surface brightness profiles and a bulge/disk decomposition of the images of the galaxies, although the disk position angle, ellipticity, and inclination of the galaxies have been done. Also, the color of galaxies was studied, where chromatic distribution and extraction of chromatic processes were studied.
Ferrite with general formula Ni1-x Cox Fe2O4(where x=0.0.1,0.3,0.5,0.7, and 0.9), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns. The lattice parameter results were (8.256-8.299 °A). Generally, x -ray density increased with the addition of Cobalt and showed value between (5.452-5.538gm/cm3). Atomic Force Microscopy (AFM) showed that the average grain size and surface roughness was decreasing with the increasing cobalt concentration. Scanning Electron Microscopy images show that grains had an irregular distribution and irregular shape. The A.C conductivity was found to increase with the frequency and the addition of Cobal
... Show MoreThe effect of doping by methyl red and methyl blue on the absorption spectra and the optical energy gap of poly (methyl methacrylat) PMMA film have been studied. The optical transmission (T%) in the wavelength range 190-900 nm for films deposited by using solvent casting method were measured. The Absorptance data reveals that the doping affected the absorption edge as a red and blue shift in its values. The films show indirect allowed interband transitions that influenced by the doping. Optical constants; refractive index, extinction coefficient and real and imaginary part of dielectric constant were calculated and correlated with doping.
... Show MoreSome of the characters of the Staphylolysin A and D enzymes purified from Pseudomonas aeruginosa P16 and P5 respectively were studied, the molecular weights of Staphylolysin A and D were 20.417 kilo dalton and 23.988 kilo Dalton respectively by SDS- polyacryl amide gel electrophoresis. The optimum pH for staphylolysin A activity was found to be 8 which gives higher activity reaches 150 unit/ml, and for enzyme stability was 7.5-8.5 in which the enzyme nearly retained its full activity, while it was 9.5 for staphylolysin D that gives higher activity of 16 unit/ml,and 8.5-9.5 for enzyme stability in which the enzyme nearly retained its full activity, Maximum activity of two enzymes was obtained at 40C in which the specific activity for st
... Show MoreThe electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
In the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreThe aim of this research is to investigation the optimization of the machining parameters (spindle speed, feed rate, depth of cut, diameter of cutter and number of flutes of cutter) of surface roughness for free-form surface of composite material (Aluminum 6061 reinforced boron carbide) by using HSS uncoated flat end mill cutters which are rare use of the free-form surface. Side milling (profile) is the method used in this study by CNC vertical milling machine. The purpose of using ANFIS to obtain the better prediction of surface roughness values and decreased of the error prediction value and get optimum machining parameters by using Taguchi method for the best surface roughness at spindle speed 4500 r.p.m, 920mm/rev feed rate, 0.6mm de
... Show MoreObjective: In order to evaluate the effect of different typed of Separating Medium on the roughness of the fitted
tissue surface of acrylic denture base.
Methodology: Chosen three types of separating medium (Group A Tin foil), (Group B Detery Isolant),(Group C
Cold Mould Seal),used 30 samples of hot cure acrylic resin ,10 samples for each group, after complete curing of
these samples , Profilometer device was used to measure the surface roughness of each sample in all groups.
Results: Using One Way ANOVA Test and LSD test, the results were highly significant in differences among all
groups. Although (Group A) showing lest roughness, (Group B) showing a satisfactory result of roughness, While
(Group C) Showing the hig
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.