Transition metal complexes of Co(II) and Ni(II) with azo dye 3,5-dimethyl-2-(4-nitrophenylazo)-phenol derived from 4-nitoaniline and3,5-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis,electronic data, FT-IR,UV-Vis and 1 HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of thecomplexes formed were studies following the mole ratio and continuous variation methods, Beer ' s law obeyed over a concentrationrange (1x10 -4 - 3x10 -4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, thestoichiomerty of the complexes has been found to be 1:2 (Metal:ligand). On the basis of physicochemical data tetrahedral geometrieswere assigned for the complexes. The inhibitory effect of prepared compounds was used to study the type of inhibition. The resultsfrom line weaver- Burk plot indicated that the inhibitor type was non competitive with a range (31.76-83-21%).
The new ligand [3,3’-(1,2-phenylenebis(azanediyl))bis(5,5-dimethylcyclohex-2-en-1-one)] (L) derived from 5,5-Dimethylcyclohexane-1,3-dione with 1,2-phenylenediamine was used to prepare a new chain of metal complexes of Mn(ii), Co(ii), Ni(ii), Cu(ii), Cd(ii) and Zn(ii) by inclusive formula [M(L)]Cl2. Characterized compounds on the basis of 1H, 13CNMR (for ligand (L)), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H and %N, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA), while its corrosion inhibition for (plain steel) in tap water is studied by weight loss. These measurements proved th
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
The [2-aminobenzothiazole]was reacted with [2,4,6 triyhydroxy-acetophenon monohydrate] to give a new ligand [2-N-2,4,6-trihydroxyacetophenonyliden benzothiazole] [H3L]. This ligand was reacted with metal ions ( CoII, NiII,CuII and ZnII) in methanol as solvent with ( 1:2 ) metal : ligand ratio to give a series of new complexes with general formula [ M(H2L)2],(where:M= CoII, NiII ,CuIIand, ZnII).All compounds were characterized by spectroscopic methods ( I.R , U.V – vis,HPLC) atomic absorption, along with chloride content and conductivity measurements. According to the data of these measurements we suggested a tetrahedral
4-methylaniline and its Schiff base derivative were intercalated into the Bentonite clay interlayers in a solid state reaction followed by a condensation reaction to produce two organo-clay composites. X-ray diffraction was used to identify the changes in basal spacing of montmorillonite layers which exhibited noticeable alteration before and after the formation of the composites. FT-IR spectra, on the other hand, were utilized for identifying the structural compositions of the prepared materials as well as the formation of the intercalated Schiff base derivative. The surface morphology of the composites was examined by Scanning Electron Microscopy SEM and Atomic Force Microscope AFM, which reflected some differences in the surface of prepa
... Show MoreComplexes of Cr(III)andNi(II) ions with phthalate sulphanilate snthranillate hippurte and glycinate ions have been preparcd then the Nephelauxetic
Liquid-Liquid Extraction of Cu(II) ion in aqueous solution by dicyclohexyl-18-crown-6 as extractant in dichloroethane was studied .The extraction efficiency was investigated by a spectrophometric method. The reagent form a coloured complex which has been a quantitatively extracted at pH 6.3. The method obeys Beer`s law over range from (2.5-22.5) ppm with the correlation coefficient of 0.9989. The molar absorptivity the stoichiometry of extracted complex is found to be 1:2. the proposed method is very sensitive and selective.
Metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Zn(II), Hg(II), Pd(II), and Pt(II) with Schiff base ligand (LH) derived from 2,5-dichloroaniline and 2-hydroxy-5-metheylbenzalaldehyde were synthesized and characterized using a variety of spectrophotometric techniques The findings of the spectroscopic analysis indicated that (LH) behaved as a binary coordinating agent to the metal ion by the N and O atoms, and the geometry shape of the complexes was octahedral, with the exception of the Pd and Pt complexes, which had a square planar geometry. Using the DPPH radical scavenging method, we investigated the antimicrobial activity of the compound against Staphylococcus aureus and Escherichia coli, as well as the antifungal activity of t
... Show MoreA new ligand [N-(4-chlorobenzoyl amino) -thioxomethyl] valine (cbv) is synthesized by reaction of 4- chloro benzoyl iso thio cyanate with valine acid. The ligand is Characterized by elemental analysis ,FT-IR, and 13C 1H NMR spectra, some transition metals complex of this ligand were prepared and Characterized by FTIR , UV-Visible spectra , conductivity measurement's ,magnetic susceptibility , atomic absorption and determination of molar ratio (M:L), from results obtained , the following formula [M(cbv)2] where M+2 =Mn, Fe ,Co , Ni , Cu,Zn,Cd, and Hg and the proposed molecular structure for these complexes as tetrahedral geometry, except copper complex is have square planer geometry
Spectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show More