Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreAbstract
Electrical magnate was designed and constructed, the optimum Magnetic flux and the effect of time on the physical properties of the alkaline (magnetic water) produced from the bottled drinking water [the total dissolved solids (TDS) or the electrical conductivity, and pH] were studied, to simulate ZamZam water in Mekka Saudi Arabia. Also, the efficiency of magnetic field from this designed electrical magnate in decreasing the TDS of sea water (of 1500 ppm NaCl Content), to convert it to water suitable for irrigation (TDS<1000 ppm) was investigated in this work.The results show that the magnetic flux from our designed electrical magnate in the range of (0.013- 0.08) Tesla and 30 minut
... Show MoreReflect the sustainable development of the interaction of three key elements are the economic component and the social component and the environmental component while focusing economic component to achieve economic growth and focuses social element to achieve social justice in the distribution of income and achieve prosperity, the environmental component related fields and including emphasizes the protection of the environment and to ensure the continuation and sustainability of resources physical, biological and form in which it believes the interaction required for development process real and effective and sustainable, and is considered the province of Kurdistan Iraq of important areas where the movement of developmental mount
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreIn this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show MoreAmplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the
... Show MoreIraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve
... Show More