Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.
Oral swab samples were collected from 120 children (ages between one month- 10 years) who were infected with oral thrush and 30 healthy children. The percentages of isolated yeasts and Bacteria were 66.6% and 96.6% respectively. The dominate yeast and bacteria were Candida albicans and Staphylococcus aureus with of 78.7% and 34.4% respectively. Results revealed that the highest percent of infection with oral thrush disease was 32.5% in children within the age of 1-2 months.
The objective was to study the effect of prepared ginkgo biloba extracts against Candida albicans isolated from healthy persons. Conducting susceptibility test, biofilm formation test, phytochemical screening test, and antioxidant activity test. One hundred oral swabs sample were obtained from healthy persons with oral lesion attending dentistry teaching hospital in dentistry college, their age ranged from 1-30 years of both sexex. The studied samples collected through 8 months (April - December / 2018). This study included two different types of ginkgo bilola extracts were prepared as aqueous and ethanolic extracts. Many tests were used, which included isolation and identification of C.albicans, conduct susceptibility test, biofilm form
... Show MoreThree types of zeolite A were prepared from Iraqi kaoline which are 3A, 4A and 5A by ion exchange method .They were characterized by XRD and atomic absorption techniques .They were used as adsorbents to examine their applicability for H2S adsorption .The adsorption process was performed in a static form and constant volume system which constructed from stainless steel .The effect of zeolite type and temperature on the adsorption properties of H2S at -5 , 25 and 55 oC was studied .The zeolite type 5A has the highest adsorption value (79.384 µmol/g ) and the three types may be arranged in a sequence toward H2S adsorption as 5 A> 4A>3A .The amount of H2S adsorbed increased as temperature decreased from 55 to -5 for all samples. Langmuir , Fre
... Show Moreالخلاصة
اهتم الفكر السياسي في القرنين الاخيرين بدراسة الطبقات على نحو غير مسبوق, واصبح موضوع التحليل الطبقي المعني بالطبقات من حيث تعريفها, وتحديد موقعها في السلم الاجتماعي, فضلاً عن نوعية العلاقة بين شرائحها وفئاتها المختلفة من حيث الصراع والتناغم, المادة الرئيسة والموضوع الاكثر اهمية في دراسات الفكر السياسي والاجتماعي.ومن بين الطبقات, احتلت الطبقة الوسطى مكا
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIncludes search unemployment concept ... types, graduate unemployment a model introduction to the researcher tackled the problem of unemployment being dangerous to the community, it's also growing in size year after year is a waste of a clear human capabilities, also addressed the importance of the research being a touch on the problem of unemployment and its concept and try to find solutions to them , and then came the goals set by the search researcher identifies unemployment and their causes and consequences and to provide a true picture of the situation of unemployed graduates and disclosure about how they treat their graduates for jobs provide him with a decent life problem. And adopted a researcher on the use of a questionnaire add
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreAbstract
Objective / Purpose: Online social relationships through the emergence of Web 2.0 applications have become a new trend for researchers to study the behavior of consumers to shop online, as well as social networking sites are technologies that opened up opportunities for new business models. Therefore, a new trend has emerged, called social trade technology. In order to understand the behavioral intentions of the beneficiaries to adopt the technology of social trade, the current research aims at developing an electronic readiness framework and UTAUT model to understand the beneficiary's adoption of social trade technology.
Design/ methodology/ Approach: To achieve the obje
... Show More