Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.
This study aimed to explore and separate the phytochemicals of the whole plant Conyza canadensis, a naturally growing plant in Iraq, since no phytochemical research was done previously in Iraq. The whole plant of C. canadensis was defatted by maceration in hexane for 24 hours. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous ethanol 85% as a solvent extraction for 9 hours, and fractionated by petroleum ether, chloroform, ethyl acetate, and n-butanol. The petroleum ether, chloroform, and ethyl acetate fractions were analyzed by high-performance liquid chromatography (HPLC) for their steroids, alkaloids, and polyphenolic (phenolic acids and flavonoids) contents. One alkaloid was isolated from chloroform fractio
... Show MoreIn this work, the effect of different particle size on the nonlinear optical properties of silver nanoparticles in de-ionized water was studied. The experimental observation of the far field diffraction patterns by CCD camera in two and three dimensions. The maximum change of nonlinear refractive index and the relative phase shift were calculated. The self-defocusing technique was used with a continuous-wave radiation from DPSS Blue laser .The wavelength is 473 nm with an output power of 270 mW. All the Ag colloids samples containing the sizes 15, 30, 50, and 70 nm of silver nanoparticles used in the study were chemically prepared. It was found that the nonlinear refractive index is a particle size dependent and of the order of 10-7 cm2/
... Show MoreIn this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
This research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Stro
... Show MoreThe objective of this study was to investigate and compare among five different methods of contraception including combined oral contraceptive pills (COC), Depot medroxyprogesterone acetate (DMPA), copper Intrauterine contraceptive device (IUCD), vaginal spermicides and male condom used in Hawler City through estimate of their effect, relative failure rate, percentage of use, adherence and compliance and adverse effects of each contraceptive method. In order to reach to these aims, a retrospective study was conducted in Hawler City in Azadi Health Care Center over a period of 6 months from 22th November, 2010 to 15th May, 2011 during which data collection and subjects follow up for 3 months had been achieved. A conv
... Show MoreA d.c. magnetron sputtering system was designed and fabricated. The chamber of this system is consisted from two copper coaxial cylinders. The inner one used as the cathode and the outer one used as anode with magnetic coil located on the outer cylinder (anode). The axial behavior of the magnetic field strength along the cathode surface for various coil current (from 2A to 14A) are shown. The results of this work are investigated by three cylindrical Langmuir probes that have different diameters that are 2.2mm, 1mm, and 0.45mm. The results of these probes show that, there are two Maxwellian electron groups appear in the central region. As well as, the density of electron and ion decreases with increases of magnetic field strengths.
In this work, we have investigated optical properties of the thermally evaporation PbS/CdS thin films. The optical constant such as (refractive index n, dielectric constant εi,r and Extinction coefficient κ) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of PbS/CdS films is calculate from (αhυ)1/2 vs. photon energy curve.
 
        