Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri May 18 2018
Journal Name
Thesis
The Arabian killifish (Aphanius dispar) as a novel model for mycophysiological studies.
...Show More Authors

Abstract Candida albicans is a commensal fungal pathogen that grows in yeast and hyphal forms in the human gut. C. albicans causes mucosal and cutaneous diseases that can result in significant mortality following systematic infections and it also exhibits drug resistance. Zebrafish have been an excellent model to investigate C. albicans infections because of their transparency and the availability of many transgenic lines. However, there is a limitation in using zebrafish as a model because the fish embryos cannot survive at 37°C therefore it is not suitable for studying Candida infections at physiological relevant human body temperature. In this thesis, the normal embryonic development of Arabian killifish (A. dispar) is investigated, rev

... Show More
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease
...Show More Authors

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Investment Trends for Iraqi Industries in Terms of Clean Production (selected model)
...Show More Authors

   Industrial Investment according to Clean Productive methods is an important element in the process of rational use of Economic Resources, and the Iraqi industrial sector relied on traditional production methods; the productive activities in this sector did not take into consideration the environmental dimension, which leads to achieving the optimal use of economic resources, so it was necessary to have new investment trends heading with Clean Production. Therefore, the research is based on the hypothesis that "Clean Production contributes to improving the environment and rational use of Natural Resources." Based on the descriptive - inductive analysis methodology that study of Iraqi industries with Clean Production,

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Journal Of Engineering
Sustainable Roadway Planning: A Model for a Proposed Rating System in Iraq
...Show More Authors

     The goal of the research is to develop a sustainable rating system for roadway projects in Iraq for all of the life cycle stages of the projects which are (planning, design, construction and operation and maintenance). This paper investigates the criteria and its weightings of the suggested roadway rating system depending on sustainable planning activities. The methodology started in suggesting a group of sustainable criteria for planning stage and then suggesting weights from (1-5) points for each one of it. After that data were collected by using a closed questionnaire directed to the roadway experts group in order to verify the criteria weightings based on the relative importance of the roadway related impacts

... Show More
View Publication Preview PDF
Publication Date
Mon May 04 2020
Journal Name
Offshore Technology Conference
Hydrate Equilibrium Model for Gas Mixtures Containing Methane, Nitrogen and Carbon Dioxide
...Show More Authors
Abstract<p>Gas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mix</p> ... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
A spherical fuzzy AHP model for contractor assessment during project life cycle
...Show More Authors
Abstract<p>Measurement of construction performance is essential to a clear image of the present situation. This monitoring by the management team is necessary to identify locations where performance is exceptionally excellent or poor and to identify the primary reasons so that the lessons gained may be exported to the firm and its progress strengthened. This research attempts to construct an integrated mathematical model utilizing one of the recent methodologies for dealing with the fuzzy representation of experts’ knowledge and judgment considering hesitancy called spherical fuzzy analytic hierarchy process (SFAHP) method to assess the contractor’s performance per the project performance pa</p> ... Show More
View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Aip Conference Proceedings
Numerical solution for weight reduction model due to health campaigns in Spain
...Show More Authors

This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 09 2014
Journal Name
Iosr Journal Of Mathematics (iosr-jm)
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Mon Jan 28 2019
Journal Name
Journal Of The College Of Education For Women
Apply the gravity model for trips between Najaf center and its settlements
...Show More Authors

The study showed flow rates and the interaction between the settlements served by applying the model of gravity theory to measure depending on the number of the population between city Najaf and the rest of the other settlements served and using three functions of disability, time and cost, as recorded an increase in the interaction index with some settlements like them Kufa, Abbasid and Manathira, while the indicator contrast was in other settlements, either when the application of the gravity model depending on trips and socio-economic characteristics accuracy rate was more pronounced.

View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Scheff'e Model of the Mixture
...Show More Authors

Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.

    To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a

... Show More
View Publication Preview PDF
Crossref