Glassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
Synthesis, characterization and pharmaceutical studies of schiff base from 2-pyrrolidinone derivative and imidazole-2-carboxaldehyde and corresponding complexes with Metal (||)
The preparation and characterization of the Cu (II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) metal complexes of heterocyclic azo ligand 2-[(4`-sulphamide phenyl) azo] -4,5-diphenyl imidazole (4-SuBAI) have been studied by elemental analysis, FT-IR and UV-Vis Spectroscopic, magnetic moment and molar conductance methods. The analytical data showed that all chelate complexes were prepared with (metal-ligand) ratio of (1:2). The general formula of these complexes was [ML2X2]. nH2O [were L=2-[(4`-sulphamide phenyl) azo]-4,5-diphenyl imidazole and X=Cl, and the octahedral geometry were suggested for these complexes .
A multistep synthesis was established for the preparation of a new vanillic acid-1, 2, 4-1triazole-3-thiol conjugate (
A new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show More2-amino-4-(4-chloro phenyl)-1,3-thiazole (1) was synthesized by refluxing thiourea with para-chloro phenacyl bromide in absolute methanol. The condensation of amine compound (1) with phenylisothiocyanate in the presence of pyridine will produce 1-(4-(4-chlorophenyl)thiazol-2-yl)-3-phenylthiourea(2), which is upon treatment with 2,4 dinitrophenyl hydrazine by conventional method, afforded 1- ( 4 - ( 4 – chlorophenyl ) thiazol – 2 – yl ) – 3 - phenylhydrazonamide,N' - ( 2 , 4 -dinitrophenyl) ,(3).The characterization of the titled compounds were performed utilizing FTIR spectroscopy, 1HNMR and CHNS elemental analysis, and by me
... Show MoreThe aim of the work is the synthesis and characterization of the tridentate Schiff base (HL) containing (N and O) as donor atoms type (ONO). The ligand is: (HL) phenyl 2-(2-hydroxybenzylidenamino)benzoate . This ligand was prepared by the reaction of (phenyl 2-aminobenzoate) with salicylaldehyde under reflux in ethanol and few drops of glacial acetic acid which gave the ligand (HL). The prepared ligand was characterized by (FT IR,UV–Vis) spectroscopy, Elemental analysis of carbon, hydrogen and nitrogen (C.H.N.) and melting point. The ligand was reacted with some metal ions under reflux in ethanol with (1 metal :2 ligand )mole ratio which gave complexes of the general formula: [M(L)2]Cl , M = Cr III La III and , Pr III Products were found
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.