Objective(s): to assess the factors which are associated with the prolonged prehospital delay of patients with
acute myocardial infarction.
Methodology: A descriptive study was conducted at the Coronary Care unit (CCU) in Al-Yarmok Teaching
Hospital, Ibn AL-Nafis Hospital for Cardiovascular Diseases, AL-Kadumia Teaching Hospital, Baghdad Teaching
Hospital, and AL-Kindy Teaching Hospital during the period of the study from February 2
nd
, 2009 to October 30th
,
2009. A random sample of (160) paƟent who were admiƩed to the hospitals were selected one by one. A
questionnaire was constructed for the purpose of the study, which is comprised of four parts that include (1)
sociodemographic data; (2) prehospital delay time was measured as the time which passed from the moment
when the patient feels the first symptoms "chest pain" until his arrival to the Coronary Care Unit (CCU) (3)
clinical data; (4) factors associated with the prolonged prehospital delay. The data were collected by the
application of the questionnaire, the interview technique, observation and the patients' sheets.
Results: The study findings indicated that the low percentage of the patients with myocardial infarction used an
ambulance (3; 1.9%) and the remaining (157; 98%) arrived at hospitals by self-transport. It is concluded that a
large proportion of Iraqi patients did not call for an ambulance after the onset of ST–Elevation Myocardial
Infarction (STEMI) symptoms.
Recommendations: The study recommends that the public should be educated that an ambulance is not merely
a transportation modality, but also a means of providing early diagnosis and treatment.
In this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MoreThis research aims to provide insight into the Spatial Autoregressive Quantile Regression model (SARQR), which is more general than the Spatial Autoregressive model (SAR) and Quantile Regression model (QR) by integrating aspects of both. Since Bayesian approaches may produce reliable estimates of parameter and overcome the problems that standard estimating techniques, hence, in this model (SARQR), they were used to estimate the parameters. Bayesian inference was carried out using Markov Chain Monte Carlo (MCMC) techniques. Several criteria were used in comparison, such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R^2). The application was devoted on dataset of poverty rates acro
... Show MoreBackground: Contact between implant material and bones must be strong and fast creation, to fulfill these properties appropriate surface modifications must apply on used implants. In this contribution; double surface modifications are applied on Ti-6Al-4V alloy to accelerate osseointegration. Materials and methods: Anodic process is utilized to create titania nanotubes (TNTs) on the screws made from Ti-6Al-4V alloy. These implants were coated with nano ZrO2 particles. Second modification was annealing anodized screws at 8000C, and implanted in tibiae of nine adult New Zealand white rabbits. Results: Physical and histological consequences of two surface modifications on Ti-6Al-4V alloy screws were studied. Scanning electron microscope (SEM)
... Show MoreIt is suitable to use precast steel-concrete composite beams to quickly assemble a bridge or a building, particularly in isolated regions where cast-in-situ concrete is not a practical option. If steel-concrete composite beams are designed to allow demountability, they can also be extremely useful in the aftermath of natural disasters, such as earthquakes or flooding, to replace damaged infrastructure. Furthermore, rapid replacement of slabs is extremely beneficial in case of severe deterioration due to long-term stressors such as fatigue or corrosion. The only way to rapidly assemble and disassemble a steel-concrete composite structure is to use demountable shear connectors to connect/disconnect the steel beams to/from the concrete slab. I
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe
... Show MoreMetal (III) and (II) coordination compounds of o- phenylenediamine, oxalic acid dihydrate and 8-hydroxyquinoline were synthesized for mixed ligand complexes and characterized using FT-IR, UV-Vis and mass spectra, atomic absorption, elemental analysis, electric conductance and magnetic susceptibility measurements. In addition, thermal behavior (TGA) of the metal complexes (1-6) showed good agreement with the formula suggested from the analytical data. The stoichiometric reaction between the metal (III) and (II) ions with three various ligands in molar ratio at aqueous ethyl alchol for (1:1:1:1) (M: O-PDA: OA: 8-HQ) [where M = Cr+3, Mn+2, Co+2, Ni+2. Cu+2 and Zn+2; O-PDA = O-Phenylenediamine; OA = Oxalic acid and 8-HQ = 8-Hydroxyquinoline]. R
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show More