Objectives: The study aims at:
1- Measuring the level of lead in workers’ saliva and blood in the factory.
2- Studying the correlation between the saliva lead level and the infection that caused by microorganisms, isolation and
identification.
3-Studying the influence of high blood lead level on the total white blood cells.
Methodology: This study has been conducted for the period from March 15th, 2010 to May, 20th
, 2010. A total of (60)
saliva and blood samples were collected from workers in batteries industry factory in Baghdad and another (20) samples
were collected as a control group. Lead level had been measured in blood and saliva samples, then microorganisms were
isolated the from the saliva samples. Microbial growth was submitted from morphological and biochemical investigation
for identification of bacterial and fungi. On the other hand; the total white blood cells and differential count were measured.
Results: The results showed that the streptococcus mutans isolates were dominated species which are isolated from the
saliva samples with 35% and 22.5% of candida albicans. On the other hand, the lead level had been measured in blood and
saliva samples, the results showed that the occupation years affect on accumulation of the lead in the blood and saliva and
significant differences were found at (p≤0.01) in samples from worker at 15 occupation years. Additionally, the results of
this study revealed statistically non-significant in total white blood cells count comparison with controlling group.
Recommendations: The study recommends conducting laboratories tests for workers in factories that deal directly or
indirectly with lead and establishing health education seminars to demonstrate the dangers of lead how we deal with it.
Porous silicon (PS) layers were formed on n-type silicon (Si) wafers using Photo- electrochemical Etching technique (PEC) was used to produce porous silicon for n-type with orientation of (111). The effects of current density were investigated at: (10, 20, 30, 40, and50) mA/cm2 with etching time: 10min. X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon. The maximum crystal size of Porous Silicon is (33.9nm) and minimum is (2.6nm) The Atomic force microscopy (AFM) analysis and Field Emission Scanning Electron Microscope (FESEM) were used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of p
... Show MoreCadmium sulfide and Aluminum doped CdS thin films were prepared by thermal evaporation technique in vacuum on a heated glass substrates at 373K. A comparison between the optical properties of the pure and doped films was made through measuring and analyzing the transmittance curves, and the effect of the annealing temperature on these properties were estimated. All the films were found to exhibit high transmittance in the visible/ near infrared region from 500nm to 1100nm.The optical band gap energy was found to be in the range 2.68-2.60 eV and 2.65-2.44 eV for CdS and CdS:Al respectively , with changing the annealing temperature from room temperature to 423K.Optical constants such as refractive index, extinction coefficient, and complex di
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreThis research aims to investigate the effect of four types of nanomaterial on the Marshall properties and durability of warm mix asphalt (WMA). These types are; nano silica(NS), nano carbonate calcium (NCC), nano clay(NC), and nanoplatelets (NP). For each type of Nanomaterial, three contents are tried as following; NS(1%, 3%, and 5%), NCC(2%, 4%, and 6%), NC(3%, 5%, and 7%), and NP (2%, 4%, and 6%) by weight of asphalt cement. Following Marhsall mix design method, the optimum asphalt cement content is determined, thereafter the optimum dosage for each nanomaterial is obtained based on the highest Marshall stability value. The durability of the control mix (no nanomaterial) and modified mixtures have been compared based on moisture damage, r
... Show MoreThis article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
Generally, the academic facilities necessitate specific criteria to be under the regional standards such as creative leaders, and a positive climates that induce to create an organizational culture within the academic institution. Consequently, these variables promote to improve the educational and administrative performance pursuing to achieve the general objectives. Thus, the current research aims to explore the level of privileged organizational culture among Baghdad University Colleges, explore the administrative creativity of deans and their assistants in addition to identify the relationship between them. The researchers prepared two instruments which were distributed among (70) individual of the targeted sample to collect the requ
... Show MoreAbstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution (Emission) was studied at 772 nm. Several process parameter were Investigated as concentration of PVA, the effect of distance from nozzle tip to the grounded collector (gap distance), and final the effect of high voltage. We find the optimum condition to prepare a narrow nanofibers is at concentration of PVA 16gm, the fiber has 20nm diameter.
In this research we prepared nanofibers by electrospinning
from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution
(Emission) was studied at 772 nm. Several process parameter were
Investigated as concentration of PVA, the effect of distance from
nozzle tip to the grounded collector (gap distance), and final the
effect of high voltage. We find the optimum condition to prepare a
narrow nanofibers is at concentration of PVA 16gm, the fiber has
20nm diameter