Objective: To evaluate the psychological work environment's effect on the workers’ productivity in Baghdad
City industries at Al-Rusafa and Al-Karkh Sectors.
Methodology: A descriptive evaluation design is employed throughout the present study from May 25th 2012
through January 7
th
, 2014. A purposive (non probability) sample is selected for the study which includes (500)
workers from industries at AL-Russafa and AL-Kerch sectors in Baghdad City. A questionnaire is constructed to
gather data which may assist to achieve the objective of the study. Content validity of the instrument is
determined through eliciting the opinions of a panel of (10) experts and the reliability through a pilot study by
using internal consistency reliability which is determined through the computation of the Cronbach alpha
correlation coefficient of the scale on data gathered from workers. Data are analyzed through the application
of descriptive statistical data analysis procedures of frequency, percentage, mean, weighted mean and
standard deviation and inferential statistical data analysis procedures of Cronbach alpha correlation coefficient,
relative sufficiency, and multiple regression.
Results: The findings depict that the psychological work environment is manifested as greatly psychological
problem creating one (43%); moderately psychological problem creating environment (49.4%) and problem
free environment. The vast majority of the workers has unfortunately experienced moderate (60.2%) and low
(38.8%) levels of productivity as a result of the influence of its indicators.
Recommendations: The study recommends that Occupational–oriented health education program with
emphasis on psychological work environment, and its impact upon workers’ productivity can be constructed
and implemented for workers on a wide-range scale. Further research can be conducted on large sample size
and nation-wide.
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreThe development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with novel zinc binding groups. The present study describes the utilization of acyl thiourea functionality, known to possess the ability to complex with metals, to be a novel zinc binding group incorporated into the designed histone deacetylase inhibitors. N-adipoyl monoanilide thiourea (4) and N-pimeloyl monoanilide thiourea (5) have been synthesized and characterized successfully. They showed inhibition of growth of human colon adenoc
... Show MoreIn the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show MoreSynthesis, characterization and pharmaceutical studies of schiff base from 2-pyrrolidinone derivative and imidazole-2-carboxaldehyde and corresponding complexes with Metal (||)