Objective(s): In the present study, glycerin is used as a substitute for tin-foil and cold mold seal (Alginate mould seal)
in the process of curing heat and cold-cure acrylic resin denture base against stone and plaster.
Methodology: 60 specimens were prepared from heat-cure acrylic resin and cold-cure acrylic resin denture base. The
study includes 12 groups of specimens depending on the type of processing, investment material and type of
separating medium that are used in curing process. Each group of them contains 5 specimens for each test.
Some of physical properties of the processed acrylic denture base that (water sorption and solubility) have been
compared with those processed using tin-foil and tin-foil substitute.
Results: The results have shown that tin-foil is still the best separating medium that is used due to the best properties
obtained when using tin-foil as a separating medium, while no significant differences have been observed between
glycerin and cold mold seal specimens in respect to water sorption and solubility of the testing groups.
Recommendations: that glycerin can be considered as a satisfactory separating medium for both heat and cold-cured
acrylic denture base resins, especially because it is easy to get, easy to use and cheap.
This paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show MoreAl-Si alloys which are widely used in engineering applications due to their outstanding properties can be modified for more enhancements in their properties. Current work investigated the ability of these alloys to be modified by casting them through the addition of nanoparticles. So, Multi-wall carbon nanotubes (CNT) and titanium carbide ceramic particles (TIC) with size of (20 nm) were added with different amounts started from (0.5 up to 3%) weight to cast alloy A356 that was considered to be the base metal matrix, then stirred with different speeds of (270, 800, 1500, 2150) rpm at 520 °C for one minute. The results showed change in microstructure’ shape of the casted alloys from the dendritic to spherical gra
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreQuantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.
Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreThe goal of this paper is to show the kinematic characteristics of gaseous stellar dynamics using scaling coefficient relationships (such as Tully-Fisher) in different spiral galaxies. We selected a sample of types of spiral morphology (116 early, 150 intermediate, and 146 late) from previous literature work, and used statistical software (statistic-win-program) to find out the associations of multiple factors under investigation, such as the main kinematic properties of the gaseous-stellar (mass, luminosity, rotational speed, and baryons) in different types of spiral galaxies. We concluded that there is a robust positive connection between Log Vrot.max.) and Log Mstar(B-V), as well as between Log Vrot.max. and Log Mbar (
... Show MoreRMK Al-Zaidi, MM Ahmed
ABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.