In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
The purpose of the current research is to identify the most important problems that primary school students suffer from inside and outside the classroom from the point of view of their teachers. A sample of (100) male and female teachers was chosen from the Rusafa\ second Directorate for the academic year (2018-2019). The research tool was prepared after reviewing literature related to the issue of problems and difficulties facing students or students in the school stage and even at university. The researcher reached several results that were discussed in the fourth chapter, with a set of conclusions based on the results of the research, and come up with several recommendations and suggestions.
A new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreIn this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
The purpose of this study was to investigate the effect of a Cognitive- Behavioral Training Program in reducing Problems Solving among a sample of education university College Students, the study sample consisted of (50) students were randomly assigned to two groups: experimental, and control; (25) students per group, the results of (ANOVA) revealed that there were significant differences at (p < 0.05) between experimental and control group in Problems Solving level, while there were significant differences between both groups in achievement. The researchers recommended further studies on the other variables which after training students on the method of solving problems and techniques to reduce stress.<
... Show MoreIn this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxi
... Show More