Preferred Language
Articles
/
ijs-9533
On Solving Singular Multi Point Boundary Value Problems with Nonlocal Condition
...Show More Authors

In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 08 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment, And Sustainability: Tmrees23fr
Analysis of x-ray diffraction lines of cuprous oxide nanoparticles by using variance analysis method
...Show More Authors

In this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Aip Conference Proceedings
The correction of the line profiles for x-ray diffraction peaks by using three analysis methods
...Show More Authors

In this study used three methods such as Williamson-hall, size-strain Plot, and Halder-Wagner to analysis x-ray diffraction lines to determine the crystallite size and the lattice strain of the nickel oxide nanoparticles and then compare the results of these methods with two other methods. The results were calculated for each of these methods to the crystallite size are (0.42554) nm, (1.04462) nm, and (3.60880) nm, and lattice strain are (0.56603), (1.11978), and (0.64606) respectively were compared with the result of Scherrer method (0.29598) nm,(0.34245),and the Modified Scherrer (0.97497). The difference in calculated results Observed for each of these methods in this study.

View Publication
Scopus (14)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Approximate Solution of Some Classes of Integral Equations Using Bernstein Polynomials of Two-Variables
...Show More Authors

The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations
...Show More Authors

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
A general solution of some linear partial differential equations via two integral transforms
...Show More Authors

In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.

View Publication
Clarivate
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Finite Element Analysis of UHPC Corbels
...Show More Authors

   Finite element method is the most widely numerical technique used in engineering field. Through the study of behavior of concrete material properties, various concrete constitutive laws  and failure criteria have been developed to model the behavior of concrete. A feature of the Finite Element program (ATENA) is used in this study to model the behavior of UHPC corbel under concentrated load only. The Finite Element (FE) model is followed by verification against experimental results. Some variable effects on the shear capacity of the UHPC corbels are also demonstrated in a parametric study. A proposed design equation of shear strength of UHPC corbel was presented and checked with numerical results.
 

View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Approximate Numerical Solutions for Linear Volterra Integral Equations Using Touchard Polynomials
...Show More Authors

In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Block Method for SolvingState-Space Equations of Linear Continuous-Time Control Systems
...Show More Authors

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Magnetic Deflection Coefficient Investigation for Low Energy Particles
...Show More Authors

In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show

... Show More
View Publication Preview PDF
Crossref