ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, automation of drainage network extraction from DEMs is an efficient way and has received considerable attention. This study aims to extract drainage networks from Digital Elevation Model (DEM) for Lesser Zab River Basin. Composition parameters of the drainage network including the numbers of streams and the stream lengths are derived from the DEM beside the delineation of catchment areas in the basin. The results from this application can be used to create input files for many hydrologic models.
Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the
... Show MoreAbstract
The aim of this study was to prepare rebamipide ocular inserts in order to extend its release on the ocular surface for dry eye treatment. Solubility study was applied to the drug with or without l-arginine using different solvents. Solvent casting technique was used to prepare the inserts; l-arginine was used to solubilize the drug, hydroxypropyl methylcellulose grades (E5 and K15M) and poly ethylene glycol 200 were used as excipients. The inserts were evaluated for their physical and mechanical properties, moisture loss% and absorption %, surface pH, and in-vitro drug release. The use l-arginine exhibited an enhancement of rebamipide solubility in both deionized water and phosphate buffer (pH 7.4) by a
... Show MoreIn this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreThis presented study is to make comparison of cross sections to produce 71As, 72As, 73As and 74As via different reactions with particle incident energy up to 60 MeV of alpha 100 MeV of proton as a part of systematic studies on particle-induced activations on enriched Ge, Ga, Rb and Nb targets and neutron capture. Theoretical calculation of production yield, and suggestion of optimum reaction to produce 71As, 72As, 73As and 74As, based on the main published and approved experimental results of excitation functions were calculated.
Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show More