The Ground Penetrating Radar (GPR) is frequently used in pavement engineering
for road pavement inspection. The main objective of this work is to validate
nondestructive, quick and powerful measurements using GPR for assessment of subgrade
and asphalt /concrete conditions. In the present study, two different antennas
(250, 500 MHz) were used. The case studies are presented was carried in University
of Baghdad over about 100m of paved road. After data acquisition and radar grams
collection, they have been processed using RadExplorer V1.4 software
implementing different filters with the most effective ones (time zero adjustment and
DC removal) in addition to other interpretation tool parameters.
The interpretation results showed that with 250 MHz antenna, the buried plastic pipe
and the flexible pavement layer were identified. The later appeared as one layer
without identifying the rigid pavement layer. With 500 MHz antenna, the plastic
pipe, rigid pavement, appeared clearly. Moreover, the short type of maximum time
window using antenna 500 MHz appeared to be the most suitable for detecting some
radar anomalies (plastic pipe, and pavement thickness) which were clearly defined.
While, the suitable radar wave velocity was 100 m/ns for estimation of the flexible
and rigid pavement layer thicknesses respectively. No change is obtained with
changing point interval. . Finally, this diagnostic tool of GPR for pavement defects
and damages investigations seems very promising, cost effective and efficient in its
implementation.
The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreThis study aims to preparation a standards code for sustainability requirements to contribute in a better understanding to the concept of sustainability assessment systems in the dimensions of Iraqi projects in general and in the high-rise building. Iraq is one of the developing countries that faced significant challenges in sustainability aspects environmental, economic and social, it became necessary to develop an effective sustainability building assessment system in respect of the local context in Iraq. This study presented a proposal for a system of assessing the sustainability requirements of Iraqi high rise buildings (ISHTAR), which has been developed through several integrated
Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat
... Show MoreEco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreThe agricultural lands that depend on supplementary irrigation methods for winter wheat cultivating in wide areas of the Nineveh province are most vulnerable to climate change concerns. Due to frequent rainfall shortages and the temperature increase recently noticed and predicted by the climate scenarios. Hence important to assess the climate effect on the crop response in terms of water consumption during the periods (2021-2040) and (2041-2060) by using high-resolution data extracted from 6 global climate data GCMs under SSP5-8.5 fossil fuel emission scenarios in changing and fixed CO2 concentration. And validate the Aqua-Crop model to estimate the yield and water productivity. And gives the RRSME of 7.1- 4.1
... Show MoreThe most significant water supply, which is the basis of agriculture, industry and human and wildlife needs, is the river. In order to determine its suitability for drinking purposes, this study aims to measure the Water Quality Index (WQI) of the Tigris River in the Salah Al-Din Province (center of Tikrit), north of Baghdad. For ten (9) physio-chemical parameters, namely turbidity, total suspended sediments, PH, electrical conductivity, total dissolved solids, alkalinity, chloride, nitrogen as nitrate, sulphate, and then transported for examination to the laboratory, water samples were collected from 13 locations along the Tigris river. Using the weighted arithmetic index method, the WQI was measured and found to be 105,87 in up-stream, wh
... Show MoreIn this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical p
... Show MorePushover analysis is an efficient method for the seismic evaluation of buildings under severe earthquakes. This paper aims to develop and verify the pushover analysis methodology for reinforced concrete frames. This technique depends on a nonlinear representation of the structure by using SAP2000 software. The properties of plastic hinges will be defined by generating the moment-curvature analysis for all the frame sections (beams and columns). The verification of the technique above was compared with the previous study for two-dimensional frames (4-and 7-story frames). The former study leaned on automatic identification of positive and negative moments, where the concrete sections and steel reinforcement quantities the
... Show MoreThe objective of the present paper is to examine the effect of Recycled Asphalt Pavement (RAP) on marshall properties and indirect tensile strength of HMA through experimental investigation. A mixture with 0% RAP was used as a control mix to evaluate the properties of mixes with 5%, 10%, and 15% RAP. One type of RAP was brought from Bab Al-moadam’s road in Baghdad for this purpose. The experimental testing program included Marshall and Indirect Tensile Strength tests. The results indicated that the bulk density, flow and VFA increase with the increasing of the percentage of RAP, while increasing in RAP results decreases in VTM and VMA values. Furthermore, the stability is changed from 10.1 kN for the control mix to12, 13.6 and 11.7 kN
... Show More