In this work, some mechanical properties of the polymer coating were improved by preparing a hybrid system containing Graphene (GR) of different weight percentages (0.25, 0.5, 1, and 2wt%) with 5wt% carbon fibres (CF) and added to a polymer coating by using casting method. The properties were improved as GR was added with further improvement on adding 5wt% of CF. The impact strength of acrylic polymer with GR increases with increasing weight ratio of GR; maximum value was obtained when the polymer coating was incorporated with 1wt% GR and 5wt% CF. The impact strength of acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Hardness increase with increasing weight ratio of Gr and a significant improvement was observed at 1wt% GR and 5wt% CF content. The tensile strength increases more significantly than the acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Pull-off strength for the polymer coating with GR and CF was greater than for the acrylic polymer coating.
In this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MoreA series of batch demulsification runs were carried out to evaluate the final emulsified water content of emulsion samples after the exposure to microwave. An experimental study was conducted to evaluate the effects of a set of operating variables on the demulsification performance. Several microwave irradiation demulsification runs were carried out at different irradiation powers (700, 800, and 900 watt), using water-in-oil emulsion samples containing different water contents (20-80%, 30-70%, and 50-50%) and salt contents (10000, 20000, and 30000 ppm). It was found that the best separation efficiency was obtained at 900watt, 50% water content and 160 s of irradiation time. Experimental results showed that microwave radiation method can
... Show MoreFresh water production from saline or waste water utilizing solar stills is the secured future approach in water industry with low cost and no environmental pollution accompanied with low productivity. In this work, the effect of inserting different available materials in a passive Single Slope Solar SSS stills on their productivity is accomplished. Side by side tests are performed on a conventional still, and three SSS stills inserted with carbon filter media, Copper wire mesh, and Cellulose sheets. All these stills are symmetrical in dimensions with 0.5 m2 base area tested for 20mm water level. The stills have been manufactured, instrumented, and tested in July 2021 under DhiQar-Iraq climate conditions (latitude 31.2° N, longitude 46.34
... Show MoreThe inhibitive power of Polyvinyl Alcohol (PVA) was investigated toward the corrosion of carbon steel in 0.2N H2SO4 solution in the temperature range of 30-60˚C and PVA concentration range of 150-2000 ppm.
The corrosion rate was measured using both the weight loss and the electrochemical techniques. The weight loss results showed that PVA could serve as a corrosion inhibitor but its inhibition power was found to be low for the corrosion of carbon steel in the acidic media. Electrochemical analysis of the corrosion process of carbon steel in an electrochemical corrosion cell was investigated using 3-Electrode corrosion cell. Polarization technique was used for carbon steel corrosion in 0.2N H
In this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
Engineered geopolymer composite (EGC) is a high-performance material with enhanced mechanical and durability capabilities. Ground granulated blast furnace slag (GGBFS) and silica fume (SF) are common binder materials in producing EGC. However, due to the scarcity and high cost of these materials in some countries, sustainable alternatives are needed. This research focused on producing eco-friendly EGC made of cheaper and more common pozzolanic waste materials that are rich in aluminum and silicon. Rice husk ash (RHA), granite waste powder (GWP), and volcanic pumice powder (VPP) were used as partial substitutions (10–50%) of GGBFS in EGC. The effects of these wastes on workability, unit weight, compressive strength, tensile strengt
... Show MoreIn this research, a variable stiffness actuator is proposed to enhance the damping of the mechanical vibrating system. The frequency response analysis of the vibrating system is dependant in order to analyze and synthesis this semi-active damping, where the suggested process is using active filter to estimate the present frequency of the vibration system, and this will limit the value of the stiffness of the vibrated system. Two active filter s are needed, low-pass-filter (LPF) to choose the higher stiffness of the actuator at small frequencies as well as more damping and high-pass-filter (HPF) to choose the lower stiffness of the actuator at high frequencies as well as more damping, and so
... Show MoreA tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring d
... Show More