GaN thin films were deposited by thermal evaporation onto
glass substrates at substrate temperature of 403 K and a thickness of
385 nm . GaN films have amorphous structure as shown in X-ray
diffraction pattern . From absorbance data within the range ( 200-
900 ) nm direct optical energy gap was calculated . Also the others
optical parameters like transmittance T, reflectance R , refractive
index n , extinction coefficient k , real dielectric constant 1 Î , and
imaginary dielectric constant 2 Î were determined . GaN films
have good absorbance and minimum transmittance in the region of
the visible light .
A thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreIn this study, Al2O3 thin films were prepared by dc reactive sputtering technique using different gas mixtures of argon and oxygen gases (90:10, 70:30, 50:50, 30:70, and 10:90). These films were characterized to introduce their surface morphology and elemental composition as functions of the oxygen content in the gas mixture. The gas mixing ratio plays a crucial role in controlling the nanoscale morphology of the prepared thin films. The [Al]/[O] ratio varies non-linearly with the Ar:O2 mixing ratio. Increasing the oxygen content leads to a progressive decrease in surface roughness, resulting in smoother and more uniform films with finer granular features. These results presented herein are useful to optimize the sputtering process to ac
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
This research includes depositionof thin film of semiconductor, CdSe by vaccum evaporation on conductor polymers substrate to the poly aniline where, the polymer deposition on the glass substrats by polymerization oxidation tests polymeric films and studied the structural and optical properties through it,s IR and UV-Vis , XRD addition to thin film CdSe, on of the glass substrate and on the substrate of polymer poly-aniline and when XRD tests was observed to improve the properties of synthetic tests as well as the semiconductor Hall effect proved to improve the electrical properties significantly
This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show More