Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentation method of gray level CT images. The segmentation process is performed by using the Fuzzy C-Means (FCM) clustering method to detect and segment kidney CT images for the kidney region. The propose method is started with pre-processing of the kidney CT image to separate the kidney from the abdomen CT and to enhance its contrast and removing the undesired noise in order to make the image suitable for further processing. The resulted segmented CT images, then used to extract the tumor region from kidney image defining the tumor volume (size) is not an easy task, because the 2D tumor shape in the CT slices are not regular. To overcome the problem of calculating the area of the convex shape of the hull of the tumor in each slice, we have used the Frustum model for the fragmented data.
This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.
The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha
... Show MoreDeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreCollagen triple helix repeat containing-1 (CTHRC1) is an essential marker for Rheumatoid Arthritis (RA), but its relationship with pro-inflammatory, anti-inflammatory, and inflammatory markers has been scantily covered in extant literature. To evaluate the level of CTHRC1 protein in the sera of 100 RA patients and 25 control and compare levels of tumour necrosis factor alpha (TNF-α), interleukin 10 (IL-10), RA disease activity (DAS28), and inflammatory factors. Higher significant serum levels of CTHRC1 (29.367 ng/ml), TNF-α (63.488 pg/ml), and IL-10 (67.1 pg/ml) were found in patient sera as compared to that in control sera (CTHRC1 = 15.732 ng/ml, TNF-α = 33.788 pg/ml, and IL-10 = 25.122 pg/ml). There was no significant correlation be
... Show MoreCollagen triple helix repeat containing-1 (CTHRC1) is an essential marker for Rheumatoid Arthritis (RA), but its relationship with pro-inflammatory, anti-inflammatory, and inflammatory markers has been scantily covered in extant literature. To evaluate the level of CTHRC1 protein in the sera of 100 RA patients and 25 control and compare levels of tumour necrosis factor alpha (TNF-α), interleukin 10 (IL-10), RA disease activity (DAS28), and inflammatory factors. Higher significant serum levels of CTHRC1 (29.367 ng/ml), TNF-α (63.488 pg/ml), and IL-10 (67.1 pg/ml) were found in patient sera as compared to that in control sera (CTHRC1 = 15.732 ng/ml, TNF-α = 33.788 pg/ml, and IL-10 = 25.122 pg/ml). There was no significant correlati
... Show More