A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account both plasma dynamics and time variation of incident laser pulse (i.e. pulse shape or profile).Shock tube relations were employed in formulating plasma dynamics over target surface. Gaussian function was chosen in formulating the pulse profile in the present modeling
The aim of this research work is to evaluate the use of 980 nm diode laser in clotting the blood
in the bone socket after tooth extraction. The objective is to prevent possible clot dislodgement which is
a defect that may lead to possible infection. A number of rabbits were irradiated using 980nm CW mode
diode laser, 0.86W power output for 9s and 15s exposure time. The irradiated groups were studied
histopathologically in comparison with a control group. Results showed that laser photothermal
coagulation was of benefit in minimizing the possibility of the incidence of postoperative complications.
The formation of the clot reduces the possibility of bleeding and infection.
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scannin
... Show MoreTwenty five samples out of sixty wound swabs taken from burn patients were identified as P. aeruginosabacteria by conventional methods. Antibiotics susceptibility tests were performed against thirteen antibiotics. P. aeruginosa samples were treated with 0.5 mg/ml of Safranin O solution then irradiated with 532nm Q-switched Nd:YAG laser at four energy densities (0.324, 0.704, 1.380, and 1.831 J/cm2) for different times of 5, 8 and 11 minutes with 5Hz repetition rate. The viability, susceptibility to antibiotic and production of pyocyanin were determined before and after irradiation. The results showed that the number of CFU/ml of P. aeruginosa decreased with increasing the dose of irradiation. Complete killing of cells was observed at 1.8
... Show MoreThe optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the
... Show MoreA new method is characterized by simplicity, accuracy and speed for determination of Oxonuim ion in ionisable inorganic acid such as hydrochloric (0.1 - 10) ,Sulphuric ( 0.1 - 6 ),nitric ( 0.1 - 10 ), perchloric ( 0.1 - 7 ), acetic (0.1 - 100 ) and phosphoric ( 0.1 - 30 ) ( mMol.L-1 )acids. By continuous flow injection analysis. The proposed method was based on generation of bromine from the Bro-3-Br-- H3O+. Bromine reacts with fluorescein to quenches the fluorescence . A sample volume no.1 (31μl) and no.2 (35μl) were used with flow rate of 0.95 mL.min-1 using H2O line no.1as carrier stream and 1.3 mL.min-1 using fluorescein sodium salt line no.2. Linear regression of the concentration ( mMol.L-1 ) Vs quenched fluorescence gives a correla
... Show MoreThis paper reports on the laser emission properties of the BBQ dye in poly (methyl meth-acrylate)(PMMA). This host material combines the advantages of an organic environment for dye with the thermoptical mechanical properties of an organic dye. A BBQ dye solid solution in PMMA polymer. A nitrogen laser in untuned laser cavity has pumped thin films. We developed the concentration and the thickness to get high efficiency. The laser efficiency had been increased from 7% at thickness 1.5 m to 16.5% at thickness 3.5m, and from 1% to 10% when concentration increased from 1x10-5M to 1x10-3 M
The relation between the output power and wavelengths for a 532nm 3W frequency doubled diode pumped solid state laser pumped Ti:Sapphire crystal is investigated. A 20 femtosecond pulse at 800 nm is obtained. A 320 mW is found to be the highest power at 800nm. Below this wavelength value and above the power was found to deviate from highest output value.