The effect of irradiation and exposure time of laser light on the fluorescence emission of DCM dye in PMMA polymer contained in the composition mold using different metals have been investigated. It was found that the fluorescence intensity decreases as the exposure time increases and then reaches stabilization at long times. The effect of the incident laser power on fluorescence intensity of DCM dye in PMMA polymer at 10-3 M and 20% mixing ratio, using copper disks of composition molds, has been studied too. It was observed that there is an upward knick in the curve at laser intensity of 19.2 W/cm2, which may be associated with the threshold for amplified spontaneous emission (ASE) or laser action. And at intensity higher than about 88.8 W/cm2 nearly saturation is reached
The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Shadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
The penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreEye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreBackground: Parvovirus B19 is a human pathogenic virus associated with a wide range of clinical conditions. During pregnancy congenital infection with parvovirus B19 can be associated with poor outcome, including miscarriage, fetal anemia and non-immune hydrops.
Objective: The study aimed to determine the prevalenceof Parvovirus B19 DNA in pregnant women attending the Military hospital in Khartoum, demonstrating the association between the virus and poor pregnancy outcomes.
Subjects and methods: This study was a cross sectional study, testing pregnant Sudanese women whole blood samples (n= 97) for the presence of Parvovirus B1
... Show More