Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreFourier Transform-Infrared (FT-IR) spectroscopy was used to analyze gasoline engine oil (SAE 5W20) samples that were exposed to seven different oxidation times (0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h) to determine the best wavenumbers and wavenumber ranges for the discrimination of the oxidation times. The thermal oxidation process generated oil samples with varying total base number (TBN) levels. Each wavenumber (400–3900 cm−1) and wavenumber ranges identified from the literature and this study were statistically analyzed to determine which wavenumbers and wavenumber ranges could discriminate among all oxidation times. Linear regression was used with the best wavenumbers and wavenumber ranges to predict oxidation time.
... Show MoreCopper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MoreThe green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
Owing to the energy crisis and pollution problems of today, investigations have concentrated on
decreasing fuel consumption and on lowering the concentration of toxic components in combustion
products by using non-petroleum, renewable, sustainable and non-polluting fuels. While conventional energy sources such as natural gas, oil and coal are non-renewable, alcohol can be coupled to renewable and sustainable energy sources.
In this study, the combustion characteristics of diesel fuel and methanol blends were compared.
The tests were performed at steady state conditions in a four-cylinder DI diesel engine at full load at
1500-rpm engine speed. The experimental results showed that diesel methanol blends provided
12.7% inc
In this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show More