Chalcopyrite thin films were one-step potentiostatically deposited onto stainless steel plates from aqueous solution containing CuSO4, In2(SO4)3 and Na2S2O3.The ratio of (In3+:Cu2+) which involved in the solution and The effect of cathodic potentials on the structural had been studied. X-ray diffraction (XRD) patterns for deposited films showed that the suitable ratio of (In3+:Cu2+) =6:1, and suitable voltage is -0.90 V versus (Ag/AgCl) reference electrode
Polyaniline Multi walled Carbon nanotubes (PANI/MWCNTs) nanocomposite thin films have been prepared by non-equilibrium atmospheric pressure plasma jet on glass substrate with different weight percentage of MWCNTs 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-55 nm and length - - 55 55 μm. the nanocomposite thin films were characterized by UV-VIS, XRD, FTIR, and SEM. The optical studies show that the energy band gap of PANI/MWCNTs nanocomposites thin films will be different according to the MWCNTs polyaniline concentration. The XRD pattern indicates that the synthesized PANI/MWCNTs nanocomposite is amorphous. FTIR reveals the presence of MWCNTs nanoparticle embedded into polyaniline. SEM surface images show that the MWCNT
... Show MoreThis study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreTin dioxide doped silver oxide thin films with different x content (0, 0.03, 0.05, 0.07) have been prepared by pulse laser deposition technique (PLD) at room temperatures (RT). The effect of doping concentration on the structural and electrical properties of the films were studied. Atomic Force Measurement (AFM) measurements found that the average value of grain size for all films at RT decrease with increasing of AgO content. While an average roughness values increase with increasing x content. The electrical properties of these films were studied with different x content. The D.C conductivity for all films increases with increasing x content. Also, it found that activation energies decrease with increasing of AgO content for all films.
... Show MoreThis study describe the effect of temperature on the optical
properties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodium
salt (NiPcTs) organic thin films which are prepared by spin coating
on indium tin oxide (ITO-glass). The optical absorption spectra of
these thin films are measured. Present studies reveal that the optical
band gap energies of NiPcTs thin films are dependent on the
annealing temperatures. The optical band gap decreases with increase
in annealing temperature, then increased when the temperature rising
to 473K. To enhance the results of Uv-Vis measurements and get
more accurate values of optical energy gaps; the Photoluminescence
spectra of as-deposited and annealed NiPcTs thin fi
The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
Alloys of InxSe1-x were prepared by quenching technique with
different In content (x=10, 20, 30, and 40). Thin films of these alloys
were prepared using thermal evaporation technique under vacuum of
10-5 mbar on glass, at room temperature R.T with different
thicknesses (t=300, 500 and 700 nm). The X–ray diffraction
measurement for bulk InxSe1-x showed that all alloys have
polycrystalline structures and the peaks for x=10 identical with Se,
while for x=20, 30 and 40 were identical with the Se and InSe
standard peaks. The diffraction patterns of InxSe1-x thin film show
that with low In content (x=10, and 20) samples have semi
crystalline structure, The increase of indium content to x=30
decreases degree o
Thin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms