A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption coefficient for CdS films decreases with increasing the annealing temperature. The optical constant for the films such as refractive index, extinction coefficient, real and imaginary part of dielectric constant were observed to decrease with increasing the annealing temperature. The particle size calculated from absorption spectrum has increased from 4.74 to 8.38 nm with increasing the annealing temperature.
This study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed
Nanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show MoreThis research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreThis study was aimed to study the effect of adding transglutaminase (TGase) on the mechanical and reservation properties of the edible films manufactured from soybean meal protein isolate (SPI) and whey protein isolate(WPI). The results showed an improvement in the properties with increase in the WPI ratios. Thickness of the SPI films amounted 0.097 mm decreased to 0.096 mm for the WPI: SPI films at a ratio of 2:1, when TGase was added decreased to 0.075 mm. While the tensile strength increased from 7.64 MPa for SPI films to eight MPa for the WPI: SPI films at a ratio of 2:1, when TGase was added increased to 11.04 MPa. Also, the elongation of the WPI: SPI films at a ratio of 2:1 presence of the TGase decreased to 40.6% compared wit
... Show MoreBackground:In this study,TiO2 layer was thermally grown as a diffusion barrier on CP Ti substrate prior to electrophoretic deposition of HA coatings, to improve the coating’s compatibility also macro and micro pores in nano Hydroxyapatite dual coatings were created and their effect on the bond strength between the bone and implant was evaluated. Materials and methods: Electrophoretic Deposition technique (EPD) was used to obtain coatings for each one of four types of Hydroxyapatite(HA)on CP Ti screws (micro HA, nano HA, dual nano HA with micro pores, dual nano HA with macro pores) where carbon particles used as fugitive material to be removed by thermal treatment to create porosity.For examination of the changes occurred on the subs
... Show MorePreparation of superposed thin film (CdTe)1-xSex / ZnS) with concentration of (x= 0.1, 0.3, 0.5) at a temperature of substrate (Ts= 80 0C) by using Thermal Vacuum Evaporation System. The measurement of X-ray diffraction shows that the compounds CdTe, ZnS, (CdTe)1-xSex and (CdTe)1-xSex / ZnS have a polycrystalline structure, the C-V characteristic shows that the capacitance degrease by increasing the concentration (x) in reverse bias, while the I-V characteristic shows the current dark (Id) increase in forward and reverse bias by increasing (x) and the photocurrent (Iph) increase in reverse bias by increasing the concentration (x), the values of photocurrent are greater than from the values of the dark current for all concentrations
... Show MoreThe Ge0.4Te0.6 alloy has been prepared. Thin films of Ge0.4Te0.6 has been prepared via a thermal evaporation method with 4000A thickness, and rate of deposition (4.2) A/sec at pressure 2x10-6 Torr. The A.C electrical conductivity of a-Ge0.4Te0.6 thin films has been studied as a function of frequency for annealing temperature within the range (423-623) K, the deduced exponent s values, was found to decrease with increasing of annealing temperature through the frequency of the range (102-106) Hz. It was found that, the correlated barrier hopping (CBH) is the dominant conduction mechanism. Values of dielectric constant ε1 and dielectric loss ε2 were found to decrease with frequency and increase with temperature. The activation energies have
... Show More