Compounds were prepared from In2O3 doped SnO2 with different doping ratio by mixing and sintering at 1000oC. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3: SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass and p-type wafer Si(111) substrates at ambient temperature under vacuum of 10-3 bar thickness of ~100nm. X-ray diffraction and atomic force microscopy were used to examine the structural type, grain size and morphology of the prepared thin films. The results show the structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy (AFM) measurements show the average grain size exhibit to change in non-systematic manner with the increase of doping ratio with tin oxide. The average grain size increases at doping ratios 1, 5 and 7 % from 52.48 to 79.12, 87.57, and 105.59 nm respectively and decreases at residual doping ratio. The average surface roughness increases from 0.458 to 26.8 nm with the increase of doping ratio. The gas sensing measurements of In2O3:SnO2 thin films prepared on p-Si to NO2 gas showed good sensitivity and Maximum sensitivity (50) obtained for In2O3:SnO2 prepared on p-Si at operating temperature 573 K and doping ratio 7 % and 9 %. Maximum speed of response time (8 sec) at operating temperature 573 K and doping ratio 1 %.
This paper presents two main parts: The first part involves manufacturing the specimens form composite material for mechanical testing (tensile, flexural and fatigue tests), then design a custom foot orthesis (CFO) and manufacturing from composite lamination (3nylglass 2carbon fiber 3nylglass) for patient suffer from flexible flat foot since birth and over-pronation. The second part of this research involves a design a model of custom foot orthesis in (solid work 2018) and then analysis of custom foot orthosis in engineering analysis program (ANSYS V.18.2).The applied pressure in boundary condition adopted from Force Sensor Resistance (FSR 402 ) in various regions in foot after wearing composite CFO. Used a composite materials in engineerin
... Show MoreElectrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a
... Show MoreA.C electrical conductivity and dielectric properties for poly
(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undoped
and doped with multi-walled carbon nanotube (MWCNTs) with
different concentrations (1, and 3 wt %) in the frequency range
(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)
blends undoped and doped with MWCNTs were prepared using
casting technique. The electrical conductivity measurements showed
that σA.C is frequency dependent and obey the relation σA.C =Aωs for
undoped and doped blends with 1% MWCNTs, while it is frequency
independent with increases of MWCNTs content to 3%. The
exponent s showed proceeding increase with the increase of PEO
ratio (≥50%) for undope
This thesis was aimed to study gas hydrates in terms of their equilibrium conditions in bulk and their effects on sedimentary rocks. The hydrate equilibrium measurements for different gas mixtures containing CH4, CO2 and N2 were determined experimentally using the PVT sapphire cell equipment. We imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via μCT. Moreover, the effect of hydrate formation on the P-wave velocities of sandstone was investigated experimentally.
The aim of the research to measure the correlation relationship between modern manufacturing systems and process design and measure the effect by adopting the regression; the research consists of two main variables, which are modern manufacturing systems and process design; it was applied in the production lines of the General Company for Construction Industries, There is a sample of managers, engineers, technicians, administrators, and some workers were selected to fill the special questionnaire with (70) forms which distributed and (65) were approved suitable for use, For data analysis the correlation coefficient was adopted to measure the relationship and regression analysis to find out the effect, Using (SPSS), So the first h
... Show MoreThe fluorescence emission of Rhodamine 6G (R6G) and Acriflavine dyes in PMMA polymer have been studied by changing the irradiation and exposure time of laser light to know the effect of this parameter. It was found that the fluorescence intensity decreases in the polymer samples doped dyes as the exposure time increases and then reaches stabilization at long times, this behavior called photobleaching, which have been shown in liquid phase less than solid phase. Using 2nd harmonic with wavelength 530 nm laser, the photobleaching effect in the two dye-doped polymers different solvent but same was studied. It was observed that photobleaching of by different solution and by using dip spin coating the photobleaching seem in liquid phase more
... Show More