Alloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analysis (XRD) for GaxSb1-x showed that the preferential orientation was (111) for all values of Ga concentration. The grain size was varied with Ga concentration. The optical analysis is performed with the FT-IR spectrophotometer. The optical measurement showed that GaxSb1-x thin films has direct energy gap .It is found that the optical energy gap increased when x increased with the range (x=0.4, 0.5 and 0.6). The optical constant for GaxSb1-x films was varied with increasing x. These prepared polycrystalline GaxSb1-x thin film was a good candidate for use as a base layer material in thermo photovoltaic (TPV).
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreThis research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.
The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current d
... Show MoreDenture bases are fabricated routinely using Poly(methyl methacrylate) (PMMA) acrylic resin. Yet, it is commonly known for its major drawbacks such as insufficient strength and ductility. The purpose of this study was to improve the performance of PMMA acrylic resin as a denture base material by reinforcement with surface treated lithium disilicate glass ceramic powder. The ceramic powder was prepared by grinding and sieving IPS e.max CAD MT blocks. Then, the powder was surface treated with an organosilane coupling agent (TMSPM) and added to PMMA in amount of 1%, 3%, 5% and 7% by weight. Characterizations of the powder was done by particle size analysis, XRD and FTIR. Transverse strength, Impact strength, Shore D hardness and surface roughn
... Show MoreThe corona virus epidemic outbreak has urged an extreme worldwide effort for re‐purposing obtainable approved medications for its treatment. In this review, we're focusing on the chemicals properties andpharmacologicaleffectiveness of medicationsofsmallmolecule that are presently being evaluated in clinical trials for the management of corona virus (COVID‐19). The current review sheds light on a number of drugs that have been diagnosed to treat COVID‐19 and their biological effects.
New nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreThe research aimed to modeling a structural equation for tourist attraction factors in Asir Region. The research population is the people in the region, and a simple random sample of 332 individuals were selected. The factor analysis as a reliable statistical method in this phenomenon was used to modeling and testing the structural model of tourism, and analyzing the data by using SPSS and AMOS statistical computerized programs. The study reached a number of results, the most important of them are: the tourist attraction factors model consists of five factors which explain 69.3% of the total variance. These are: the provision of tourist services, social and historic factors, mountains, weather and natural parks. And the differenc
... Show More