Alloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analysis (XRD) for GaxSb1-x showed that the preferential orientation was (111) for all values of Ga concentration. The grain size was varied with Ga concentration. The optical analysis is performed with the FT-IR spectrophotometer. The optical measurement showed that GaxSb1-x thin films has direct energy gap .It is found that the optical energy gap increased when x increased with the range (x=0.4, 0.5 and 0.6). The optical constant for GaxSb1-x films was varied with increasing x. These prepared polycrystalline GaxSb1-x thin film was a good candidate for use as a base layer material in thermo photovoltaic (TPV).
A series of liquid crystals comprising a heterocyclics dihydro pyrrole and 1,2,3-triazole rings [VII]-[X] were synthesized by many steps starting from a reaction of 3,3'-dimethyl-[1,1'-biphenyl]- 4,4'-diamine with chloroacetyl chloride in a mixture of solutions DMF and TEA to synthesise the compounds [I], then the compounds [I] reacted with malononitrile in 1,4-dioxane and TEA solutions to produce compounds [II], then the first step is repeated with compound [II] where it reacted with chloroacetyl chloride in mixture of DMF and TEA to give compound [III], this compound reacted with sodium azide in the presence of sodium chloride and DMF as solvent to produce the compound [IV], which reacted with acrylic acid by a 1.3 dipolar reaction in sol
... Show MoreIn this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
Background: Moringa peregrina is widely used in the traditional medicine of the Arabian Peninsula to treat various ailments, because it has many pharmacologically active components with several therapeutic effects. Objective: This study aimed to investigate the inhibitory effect of Moringa peregrina seed ethanolic extract (MPSE) against key enzymes involved in human pathologies, such as angiogenesis (thymidine phosphorylase), diabetes (α-glucosidase), and idiopathic intracranial hypertension (carbonic anhydrase). In addition, the anticancer properties were tested against the SH-SY5Y(human neuroblastoma). Results: MPSE extract significantly inhibited α-glucosidase, thymidine phosphorylase, and carbonic anhydrase with half-maximal i
... Show MorePolyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the form
In the present work, lead silicate glasses have been prepared with
different amount of lead oxide content. Structure properties such as
X-ray diffraction, AFM, and FTIR analyses have been done. The
exceeding of PbO content more than 25wt% revealed a decreasing in
density. The X- ray revealed that the strongest peak related to
Hexagonal silica dioxide and the other crystal phases formed were
related to silica oxide (SiO2) and lead oxide (PbO). Growth and
decayed phases in X-ray have been observed with changing lead
oxide content. Homogeneous surface was obtained using AFM
analyzer with an average diameter around 100 nm. Infrared spectrum
is characterized by the presence of large absorption band between
120
The preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl3 concentration on the SnO2-Sb2O3 composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl2 . 2H2O solution in a mixture of HNO3 and NaNO3, with different concentrations of SbCl3. The SnO2-Sb2O3 deposit layer’s structure and morphology were examined and the 4 g/l Sb
... Show MoreThe design of coordination compounds with solvent-responsive optical properties remains a central challenge in molecular photonics. Here, we describe the synthesis and full characterisation of a symmetrical tetradentate diamine ligand, 3,3′-((1,2-phenylenebis(azanediyl))- bis(methanylylidene))bis(pentane-2,4-dione) (H₂L), and its neutral square-planar complexes [M(L)] (M(II) = Co, Ni, Cu). The Cu(II) complex crystallised as [Cu(L)]⋅0.5 (pyrazine), adopting a nearly square-planar geometry (τ₄ = 0.06) in the solid state, as confirmed by single-crystal X-ray diffraction. In DMSO solution, UV–Vis spectra revealed reversible axial coordination of two solvent molecules, driving a transformation to a distorted octahedral geometry. Struc
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show MoreElectronic properties including (bond length, energy gap, HOMO, LUMO and density of state) as well as spectroscopic properties such like infrared, Raman scattering, force constant, reduced mass and longitu- dinal optical mode as a function of frequency are based on size and concentration of the molecular and nanostructures of aluminum nitride ALN, boron nitride BN and AlxB7-XN7 as nanotubes has calculated using Ab –initio approximation method dependent on density functional theory and generalized gradient approximation. The geometrical structure are calculated by using Gauss view 05 as a complementary program. Shows the energy gap of ALN, BN and AlxB7-XN7 as a function of the total number of atoms , start from smallest molecule to reached
... Show More