In current research Copper was employed for preparing a ternary system of Al–Si alloy in different (0.2–2.5 wt. %) the best was taken is (1.5%wt) of copper that circumstances of solidification for improving the mechanical performance of the available in aluminium alloy. Cast iron molds were prepared to obtain tensile strength testing specimens. Alloys were prepared by employing gas furnaces. The molten metal was poured into a preheated cast-iron mold. The obtained alloy structures were studied using an X-ray diffractometer and optical microscopy. The mechanical performance of the prepared alloys was examined under the influence of different hardening conditions in both heat and non-heat-treated conditions. The outcomes showed at the ideal input status of friction stir processing, the cast alloy microstructure was enhanced in terms of refinement of eutectic and primary Si particles, homogeneous dispersion of Si, and the reduction in porosity. The mineral compounds formed during the hardening process were examined using an optical microscope. The highest maximum tensile strength (UTS) was 120 MPa for sample Al-22.5Si, and 147 MPa for sample Al-21Si-1.5Cu, while the highest hardness was 77 HB for sample Al-22.5Si, and 90 HB for sample Al-21Si-1.5Cu.
Surfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This paper utilizes regression models to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, Copper alloy, and Gray cast iron) were considered with different cutting speed ( ) and feed rate ( ). A mathematical Model depending on statistical-mathematical method between surface roughness (Rz ) and cutting condition ( , ) were derived, for the three materials
... Show MoreThe increasing anti-bacterial drug resistance is one of the biggest challenges facing doctors around the globe, so finding alternative treatments is one of the ideal options to overcome this problem. The cruciferous family is one of the wealthiest plants worldwide because it contains the most important secondary metabolites, glucosinolates, known for their anti-microbial properties. The present study aimed to evaluate the anti-bacterial effect of glucosinolates (Sinigrin) against eight bacterial isolates (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Actinomyces, Proteus mirabilis and Streptococcus pneumoniae). The current study investigated six concentrations of pure
... Show MoreNew evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreSewage pumping stations are considered an important part of any sewerage system. Pumps failure in these stations means that the pumps are unable to work at the design requirement (flow capacity and head) and that may cause sewer overflow and flooding leading to sewer deterioration. In this paper, two main sewage pumping stations in Baghdad city were selected as case studies, Al- Habibia and Al-Ghazali located on Zublin trunk sewer 3000 mm and Baghdad trunk sewer 1200-2100 respectively. This study focused mainly on the operation of main sewage pumping stations and their effect, both directly and indirectly, on changing hydraulic properties, which leads to an increase in the deterioration of sewage pipes. The hydraulic analysis was co
... Show MoreThe study deals with reactivity insertion linear and non linear and/or Ramp reactivity expressed as a polynomial in time in the presence of two Feedback mechanisms, using the neutronic-thermohydraulic coupling in order to predict the neutron behavior as a function of time in terms of reactor power. Also, a comparative study has been achieved in the case of the presence of the feedback mechanisms. Insertion of Ramp reactivities in terms of polynomial in time to study the behavior of power and reactivity as a function of time in the presence of two feedback mechanisms (fuel and coolant) has been carried out and the results are displayed as plots, and showed this results corresponding with international results. The present study shows t
... Show MoreFrequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported. These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics of a plate with different
... Show MoreThis paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show More