In this research, Zinc oxide (ZnO)/epoxy nanocomposite was synthesized by simple casting method with 2wt. % ZnO concentration. The aim of this work was to study the effect of pH and composite dosage on the photocatalytic activity of ZnO/ epoxy nanocomposite. Scanning electron microscopy (SEM) technique images proof the homogeneous distribution of ZnO nanoparticles in epoxy. A synthesized nanocomposite samples were characterized by Fourier Transform Infrared spectrometer (FTIR) measurements. Two spectra for epoxy and 2wt.% ZnO/epoxy nanocomposites were similar and there are no new bonds formed from the incorporation of ZnO nanoparticles. Using HCl and NaOH were added to Methylene blue (MB) dye (5ppm) to gat pH values 3 and 8. The degradation of the dye was 90.816% were pH =8 after 180 min. under sun-light. The degradation was 6.131% were pH=3 after 240 min. under sun-light irradiation. It is found that the base solution help in accelerating the photocatalytic process, pH with high value provides greater concentration of hydroxyl ions which interact with h+ to form hydroxyl radicals OH- that give an enhancement degradation rate of dyes. The dose of ZnO was increased from 3g to 6g with Methylene blue MB (5ppm) the degradation was 94.3755% after 240 min. under sun-light irradiation. This means that increasing the dose of ZnO, the photocatalytic activity will be increased.
Background: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show MoreIn this work polymeric composites were done from unsaturated polyester as a matrix reinforced with glass fiber type (E-glass) with two different volume fraction 20% & 40%. Fatigue tests showed that the number of fatigue cycles to failure limit for samples reinforced with uniform (woven Roving 0-90°) E-glass fiber and random (continuous fibers) with volume fraction 40% more than that for the same samples with volume fraction 20%. Also the fatigue results showed that the uniform samples failed with fatigue cycles more than that of random.
This research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.
This research was conducted to determine content levels of heavy metal pollution. Samples taken from Ishaqi River bank and adjacent agricultural soils area, in ten sites, distributed along 48 km of the Ishaqi River, north Baghdad. The evaluated metals were Zinc, Copper, Manganese, Iron, Cobalt, Nickel, Chromium, Cadmium, Vanadium and Lead. PH and Electric Conductivity (EC) were measured to evaluate the acidity and (EC). Results showed that most site were contaminated with metals evaluated. Among these metals, Zn, Mn, Fe and Ni were consistently higher in all the samples (both river bank and adjacent soil) followed by PB, CU, V, Cd, Co and Cr. The level concentrations of river bank were almost higher than that of adjacent soil. As will be re
... Show MoreABSTRACT Background: Neuropilin 1(NRP1) is considered a novel non - tyrosine kinase co- receptor for the vascular endothelial growth factors (VEGF). First discovered on migrating neurons. NRP1is suggested to be up-regulated in cells of different types of cancer and implicated with advanced disease. The aim of this study was to investigate the variation in expression of NRP1 in oral, laryngeal and skin squamous cell carcinoma. Materials and methods: Tissue sections from 120 formalin fixed- paraffin embedded blocks histopathologically diagnosed as oral, laryngeal and skin SCC (40 blocks for each),immunohistohemically stained in immunoperoxidase method with monoclonal antibodies to NRP1, the localization of expression was examined and the res
... Show More